首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We lay out the scientific rationale for and present the instrumental requirements of a high‐resolution adaptiveoptics Echelle spectrograph with two full‐Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solarstellar connection. Late‐type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T‐Tauri stars as well as in the acceleration and collimation of jet‐like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X‐ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma‐ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We describe the future night‐time spectrograph for the GREGOR solar telescope and present its science core projects. The spectrograph provides a 3‐pixel resolution of up to R = 87 000 in 45 échelle orders covering the wavelength range 390‐900 nm with three grating settings. An iodine cell can be used for high‐precision radial velocity work in the 500‐630 nm range. The operation of the spectrograph and the telescope will be fully automated without the presence of humans during night‐time and will be based on the successful STELLA control system. Future upgrades include a second optical camera for even higher spectral resolution, a Stokes‐V polarimeter and a link to the laser‐frequency comb at the Vacuum Tower Telescope. The night‐time core projects are a study of the angular‐momentum evolution of “The Sun in Time” and a continuation of our long‐term Doppler imaging of active stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

4.
FIES is a cross‐dispersed high‐resolution echelle spectrograph at the 2.56 m Nordic Optical Telescope (NOT), and was optimised for throughput and stability in 2006. The major 2006 upgrade involved the relocation of FIES to a stable environment and development of a fiber bundle that offers 3 different resolution modes, and made FIES an attractive tool for the user community of the NOT. Radial‐velocity stability is achieved through double‐chamber active temperature control. A dedicated data reduction tool, FIEStool, was developed. As a result of these upgrades, FIES is now one of the work‐horse instruments at the NOT. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Fabrication of an optical dual-beam spectropolarimeter as an add-on facility to an existing astronomical spectrograph at the Vainu Bappu Telescope is described. The polarimetric optics consists of a superachromatic Pancharatnam design half-wave plate and a modified Glan-Taylor polarizing beam splitter. Instrumental response, calibration and characterization of the system are presented. Performance of the spectropolarimeter has been assessed based on the results of observations of polarized and unpolarized standard stars. The attainable accuracy of the instrument is found to be dependent on the S/N of the data. The present data set yields an accuracy of ±0.5% at 4000 Å and ±0.3% at 7500 Å, at a spectral resolution of 7.2 Å. Analysis of spectropolarimetric data is systematically covered for removal of instrumental errors. The spectropolarimetric reduction software (SPRS), extremely versatile, user friendly and compatible with the IRAF image processing package, was developed for reducing spectropolarimetric data. The empirical relation by Serkowski (IAU Symposium 52, Interstellar Dust and Related Topics, J. M. Greenberg and H. C. van de Hulst (eds.), Dordrecht, Reidel, 1975, p. 145) for wavelength dependence of polarization due to interstellar medium has been fitted to the data for the star HD 43384 (9 Gem). Our result shows a polarization larger by 0.49% from Hsu and Berger (ApJ 262, 1982, 732). We attribute this difference to the long term variation in P for this star.  相似文献   

7.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
At high redshift the ubiquity of outflows and winds in strongly star‐forming galaxies has been demonstrated using rest frame UV absorption lines. In the cases with optical emission lines, the studies mostly had to rely on low and intermediate dispersion spectra. This implies that for detailed studies of galactic wind physics we have to use local objects. In particular, dwarf galaxies are well suited to extrapolation to high redshift protogalaxies. Several kinematic studies of strongly starforming dwarf galaxies using Fabry‐Pérot and IFU spectrographs exist. Unfortunately, similar as for high redshift galaxies the employed spectral resolution is often significantly higher that the thermal line width. As a result faint high velocity features and details of the turbulent motion are hidden or unresolved. Here we will present an analysis of the ionized gas kinematics of the prototypical star‐forming irregular galaxy NGC 4449 using long‐slit, high‐dispersion échelle spectra. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have determined an improved orbit for the bright, evolved, double lined binary γ Canis Minoris. The system has an orbital period of 389.31 days and an eccentricity of 0.2586. We have revised the secondary to primary mass ratio to 0.987. The spectral types of the primary and secondary are K4 III and K1: III, respectively, and the components have a V magnitude difference of 2.2. Orbital fits to the Hipparcos astrometry are not definitive, but they suggest an orbital inclination of ∼ 66°, which produces masses of 1.88 and 1.85 M for the components. A comparison with evolutionary tracks results in an age of 1.3 Gyr. STELLA very low amplitude radial velocity residuals of the secondary indicate a period of 278 days. We interpret this as the rotation period of the secondary, detectable because of star spots rotating in and out of view. This period is nearly identical to the pseudosynchronous rotation period of the star. The primary is rotating more slowly than its pseudosynchronous rate. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This series of high quality elemental abundance analyses of mostly Main Sequence normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the 1.22‐m Dominion Astrophysical Observatory telescope's coudé spectrograph. Here we expand the range of stars examined to include two relatively quiescent F supergiants. ν Her (F2 II) and 41 Cyg (F5 Ib‐II) are analyzed as consistently as possible with previous studies. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. High signal‐to‐noise spectrograms and high quality atomic data were employed. The derived values of these photometrically constant stars are somewhat different with the abundances of ν Her being somewhat metal‐poor and those of 41 Cyg being crudely solar‐like. Our analyses indicate that the basic results of Luck & Wepfer (1995) who also studied ν Her and 41 Cyg are not likely to be significantly changed by new studies of all their stars. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The orbital elements of HD 54901, HD 120544 and HD 123280, three nearby F‐type spectroscopic binaries, are presented. They are based on observations made between 1982 and 2004 with the CORAVEL instrument of Observatoire de Haute‐Provence. Physical parameters are derived for the two components of HD 54901 (SB2) and for the primaries of HD 120544 and HD 123280. The rotation‐revolution synchronism of the detected components is investigated. Pseudosynchronism is very likely achieved by the F7 V secondary component of HD 54901, whereas the F2/3 IV primary has not yet reached this stage. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present the status of an ongoing study for a high‐resolution near‐infrared echelle spectrograph for the 10.4‐m GTC (Gran Telescopio de Canarias) which will soon start operating at the Observatorio del Roque de los Muchachos on the island of La Palma. The main science driver of this instrument, which we have baptized NAHUAL, is to carry out a high precision radial velocity survey of exoplanets around ultracool dwarfs. NAHUAL is being especially designed to achieve the highest possible accuracy for radial velocity measurements. The goal is to reach an accuracy of a few m/s. It is thus required that the instrument is cross‐dispersed and that it covers simultaneously a wide wavelength range. Absorption cells will be placed in front of the slit which will allow a simultaneous self‐reference similar to an iodine‐cell in the optical regime. It is planned to place the instrument at one of the Nasmyth platform of the GTC behind the Adaptive Optics system. Our current design reaches a maximum spectral resolution of λ/Δλ = 50000 with a slit width of 0.175 arcsec, and gives nearly complete spectral coverage from 900 to 2400 nm. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This paper presents extended analyses of β UMa (A0mA1 IV‐V), α Dra (A0 III), π Dra (A2 IIIs), and κ Cep (B9 III) which have previously been studied in this series. α Dra is a metal‐poor star while κ Cep has solar abundances. Both β UMa and π Dra are Am stars. Whenever possible, more accurate and precise gf values replace older values. High S/N (200+) and high dispersion Dominion Astrophysical Observatory spectrograms to the red of previously obtained spectra supplement the observations. The derived rotational velocities are 45, 25, 26, and 23 km s–1, respectively. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. The results of the extended and the previous analyses are in good agreement. Thus in the past decade a significant improvement in the system of gf values has not been achieved although for many lines there have been changes. The use of additional regions has increased the quality of some results (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this study V2109 Cyg (a pulsating δ Scuti star) has been modelled. In treating the oscillation equations perturbation in gravitational potential energy has been taken into account. Both radial and nonradial oscillations are treated with adiabatic approximation. The so called radial fundamental frequency (5.3745 c/d) and the nonradial frequency (5.8332 c/d) were obtained within a satisfactory precision. It was found that the Cowling approximation introduced more error as one went from low overtones to high overtones in radial oscillations. A similar trend was observed in nonradial case with low values of l. By keeping the effective temperatures almost the same as with V2109 Cyg two more models with different masses have also been calculated to see the effect of inclusion of perturbation in gravitational potential energy on oscillation frequencies in different masses. Conclusion arrived is that one must be careful to employ the Cowling approximation especially for high nonradial oscillation frequencies. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The orbital elements of seven single‐lined spectroscopic binaries, HD 31855, HD 59643, HD 60092, HD 133189, HD 162262, HD 203522, BD +43° 1331 are presented. They are obtained from observations made with two photoelectric spectrometers of CORAVEL type, the first located at the Observatoire de Haute‐Provence and the second at the Cambridge Observatories. From those orbital elements and other data available in the literature, we deduce some information about the unseen companions and their separations with respect to the primaries. We then discuss the rotation‐revolution synchronism and conclude that some of those stars have probably reached the state of (pseudo‐)synchronism. Finally we give a synopsis of the results obtained in this series of papers. Our radial velocity monitoring of more than three decades has allowed us to derive accurate orbital elements of 35 spectroscopic binaries, with a cool primary star of type F‐G‐K‐M. The corresponding range of periods varies from a few days to more than 10 years. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present the results of our observations of eight magnetic Herbig Ae/Be stars obtained with the X‐shooter spectrograph mounted on UT2 at the VLT. X‐shooter provides a simultaneous, medium‐resolution and high‐sensitivity spectrum over the entire wavelength range from 300 to 2500 nm. We estimate the mass accretion rates (acc) of the targets from 13 different spectral diagnostics using empiric calibrations derived previously for T Tauri‐type stars and brown dwarfs. We have estimated the mass accretion rates of our targets, which range from 2 × 10–9 to 2 × 10–7 M yr–1. Furthermore, we have found accretion rate variability with amplitudes of 0.10–0.40 dex taking place on time scales from one day to tens of days. Additional future night‐to‐night observations need to be carried out to investigate the character of acc variability in details. Our study shows that the majority of the calibration relations can be applied to Herbig Ae/Be stars, but several of them need to be re‐calibrated on the basis of new spectral data for a larger number of Herbig Ae/Be stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We examine the sharp‐lined stars HR 6455 (A3 III, v sin i = 8.7 km s–1) and η Lep (F2 V, v sin i = 13.5 km s–1) as well as δ Aqr (A3 V, v sin i = 81 km s–1) and 1 Boo (A1 V, v sin i = 59 km s–1) to increase the number consistently analyzed A and F stars using high dispersion and high S/N (≥200) spectrograms obtained with CCD detectors at the long Coudé camera of the 1.22‐m telescope of the Dominion Astrophysical Observatory. Such studies contribute to understanding systematic abundance differences between normal and non‐magnetic main‐sequence band chemically peculiar A and early F stars. LTE fine analyses of HR 6455, δ Aqr, and 1 Boo using Kurucz's ATLAS suite programs show the same general elemental abundance trends with differences in the metal richness. Light and iron‐peak element abundances are generally solar or overabundant while heavy element and rare earth element abundances are overabundant. HR 6455 is an evolved Am star while δ Aqr and 1 Boo show the phenomenon to different extents. Most derived abundances of η Lep are solar (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The paper presents new photoelectric observations of the eclipsing binary systems DU Boo and AG Vir. The systems are somewhat similar – both are A‐type contact binaries with the maximum following the primary minimum being the brighter one. This light curve asymmetry is extremely temporally stable. The phase dependence of the color indices is unexpectedly small for the observed amplitude of the O'Connell effect, amounting to about 0.1 mag in the optical wavelength range which indicates a very large heated area with a temperature contrast of ΔT ≈ 1000–1500 K. The broadening functions (BFs) of the systems do not show any dark solar‐type photospheric spots. On the other hand, there are significant differences of BFs between the quadratures (surprisingly similar in both systems) indicative of stream of matter or bright region causing additional emission seen between the components around the phase 0.25. Absolute parameters of the components slightly depend on the adopted model. Long orbital period of both contact binaries combined with late spectral type indicate that the primary components of either of the systems (but particularly in case of DU Boo) already evolved off the main sequence (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The orbital elements of three red‐giant single‐lined spectroscopic binaries, HR 1304, HR 1908 and HD 126947, are presented. They are obtained from observations made with two photoelectric spectrometers of CORAVEL type, the first located at the Observatoire de Haute‐Provence and the second at the Cambridge Observatories. HR 1304 and HR 1908 are known to be chromospherically active stars and to have high spatial velocities; HD 126947 is an intrinsic variable newly detected by Hipparcos. The three systems have long orbital periods: 1.9, 3.2 and 7.7 yr for HR 1304, HR 1908 and HD 126947, respectively. From the orbital elements that we determined and other data available in the literature, we deduce some information about the unseen companions and their separations with respect to the primaries. Finally we discuss the rotation–revolution synchronism and conclude that one star, HR 1908, may have reached the state of pseudo‐synchronism, despite of its long orbital period. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号