首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Out of over 200 known short-period comets, we analyse a self-consistent list of 105 comets which have accurately estimated nuclei radii. It is found that both the median size and the size distribution index of these comets vary as a function of the perihelion distance, q , of the cometary orbit. A value of   q ≈ 2.7 au  divides the comets into an outer solar system group which are hardly affected by decay, and an inner solar system group which are decaying quickly. It is estimated that 10, 20 and 30 per cent of the 105 comets will have decayed away after 1000, 2000 and 3000 yr, respectively.  相似文献   

2.
In the paper two chosen features of the comet 103P/Hartley 2 are studied. The first one are ‘cometary geysers’ which have been recorded by the camera on Deep Impact spacecraft. The numerical calculations related with this phenomenon have been carried out for large number of values of probable cometary characteristics. Our calculations confirm the assumption what also has been observed by NASA's scientists that the jets of carbon dioxide from the geysers are able to lift large chunks of water ice from the comet. The second discussed feature of the comet 103P/Hartley 2 is the lack of impact holes on the surface of its nucleus. The expected rate of impact holes on the surface of the nucleus of 103P/Hartley 2 is discussed. These holes could be the product of impacts between this comet and other small bodies orbiting in the main asteroid belt. The probability of such impacts, the total number of expected perceptible holes and changes in the luminosity of the comet caused by collisions are examined. We conclude that indeed the number of visible holes on its surface should be negligible (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
One explanation of the sudden changes in the brightness of comets is proposed based on the author's earlier suggestions involving the fragmentation of cometary grains. Within the inner coma, a core‐mantle model of the structure of grains is assumed. The proposed mechanism is a combination of electrostatic stress and thermodynamical fragmentation of the cometary grains water‐ice mantle. It has been shown that the vapour pressure of volatile inclusions placed in the waterice mantle of grains can increase sufficiently to cause their fragmentation. It takes place before grains can completely sublime into the vacuum away. Numerical calculations have been carried out for a large range of values of probable physical characteristics of cometary material. The proposed approach yields increases in cometary brightness consistent with observations of typical cometary outbursts. It is concluded that this approach can provide an explanation of the sudden change in activity of comets for a wide range of heliocentric distances (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The catastrophic thermodynamic destruction of large cometary heterogeneous grains lying on the surface of a comet nucleus is examined. The core–mantle grain-structure model is assumed. Grain fragmentation as an explanation of sudden changes in cometary brightness is proposed. The approach presented to the problem of cometary outbursts is a development of a previous author's paper. The proposed mechanism is based on the idea of thermodynamical destruction of heterogeneous cometary grains. Numerical simulations have been carried out for a wide range of values of physical characteristics of cometary material. The results obtained are consistent with observational data. The main conclusion of this paper is that thermodynamical fragmentation of large grains can explain variations in brightness and also outbursts of comets.  相似文献   

5.
As far as outbursts activity is concerned, the 29P/Schwassmann‐Wachmann 1 is the exceptional comet. This Centaur object shows quasi‐regular flares with periodicities of 50 days (Trigo‐Rodriguez et al. 2010). In the introductory part of the presented paper the most well‐known hypotheses which try to explain this cometary behaviour are reviewed. The second, actual part of this paper presents the new model for the outburst activity of this comet. The model is based on the idea of Ipatov (2012), according to which there are large cavities below a considerable fraction of the comet's surface containing material under high gas pressure. In favourite conditions the surface layers over the cavities are thrown away and the interior of these cavities is exposed. Consequently, an outburst of the comet's brightness may be observed. The main characteristics of an outburst of this comet, the brightness jump, is calculated. Numerical simulations were carried out for wide range of possible cometary parameters. The obtained results are in good agreement with the observations. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The comet 29P/Schwassmann-Wachmann 1 is an exceptional comet as far as cometary outbursts are concerned. Despite its large distance from the Sun (about 6 au), it shows quasi-regular outburst activity, usually once or twice a year. Up to now there has not been a generally accepted model that explains this phenomenon. In the first part of this paper, the most well-known hypotheses that attempt to explain the outburst activity of this comet are presented and critically analysed. The main aim of this paper is to present a model for the outburst activity of this comet. The model is based on the global analysis of the internal structure and physical and chemical processes that take place in the cometary nucleus. Numerical calculations were carried out for reasonable assumed values of a large range of cometary characteristics. The obtained results are consistent with observational data.  相似文献   

7.
The macro-features of the surface layer of a 'fresh' cometary nucleus are modelled by assuming that the dust and the snow particles of which it consists both have a mass distribution index of 1.65, and that the dust/gas mass ratio is 0.45. Conclusions are drawn as to how this model helps us to understand the cometary sublimation process and the cometary surface layer. The latter most probably consists of weak, low-density, friable, slightly dusty snow. Its ability effectively to support even the small weight of, say, the Rosetta landing probe is in considerable doubt.  相似文献   

8.
We present a new method to study the long-term evolution of cometary nuclei in order to estimate their original size, and we consider the case of comets 46P/Wirtanen (hereafter 46P) and 67P/Churyumov–Gerasimenko (hereafter 67P). We calculate the past evolution of the orbital elements of both comets over 100 000 yr using a Bulirsch–Stoer integrator and over 450 000 yr using a Radau integrator, and we incorporate a realistic model of the erosion of their nucleus. Their long-term orbital evolution is prominently chaotic, resulting from several close encounters with planets, and this result is independent of the choice of the integrator and of the presence or not of non-gravitational forces. The dynamical lifetime of comet 46P is estimated at ∼133 000 yr and that of comet 67P at ∼105 000 yr. Our erosion model assumes a spherical nucleus composed of a macroscopic mixture of two thermally decoupled components, dust and pure water ice. Erosion strongly depends upon the active fraction and the density of the nucleus. It mainly takes place at heliocentric distances <4 au and lasts for only ∼7 per cent of the lifetime. Assuming a density of 300 kg m−3 and an average active fraction over time of 10 per cent, we find an initial radius of ∼1.3 km for 46P and ∼2.8 km for 67P. Upper limit are obtained assuming a density of 100 kg m−3 and an active fraction of 100 per cent, and amounts to 21 km for 46P and 25 km for 67P. Erosion acts as a rejuvenating process of the surface so that exposed materials on the surface may only contain very little quantities of primordial materials. However, materials located just under it (a few centimetres to metres) may still be much less evolved. We will apply this method to several other comets in the future.  相似文献   

9.
10.
The paper considers results of collisions between comets and meteoroids. We re‐discuss the five different approaches to estimate the sizes of holes created during such collisions. The results of the Deep Impact and the Stardust‐NExT missions to comet 9P/Temple 1 are applied to the estimation of these methods. We use the observed amount of ejected mass, the jump of brightness of the comet 9P/Tempel 1 as well as the diameter of the excavated crater. In the paper the simple way of estimation of impact consequences by use of the conception of the fragmentation energy of comet is also discussed. The numerical calculations were carried out for reasonable assumed values of a large range of cometary characteristics. The main conclusion of this paper confirms a general presumption that the main factor which determines the size of the impact crater on the comet 9P/Tempel 1 is the kinetic energy of impactor and strength or fragmentation energy of cometary material. In the considered case the gravitation of a comet has a minor meaning (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The numbered Jupiter family comets (orbital periods   P < 20 yr  ) have a median orbital inclination of about     . In this paper, we integrate the orbits of these comets into the future, under the influence of both typical non-gravitational forces and planetary perturbation, using a Bulirsch–Stoer integrator. In the case where non-gravitational forces were not acting, the median inclination of those comets that remained on   P < 20 yr  orbits increased at the rate of  (1.92 ± 0.12) × 10−3 deg yr−1  for the first 3600 yr of the integration. During this time the population of the original family decreases, such that the half-life is about 13 200 ± 800 yr. The introduction of non-gravitational forces slows down the rate of increase in inclination to a value of around  (1.23 ± 0.16) × 10−3 deg yr−1  . This rate of increase in inclination was found to be only weakly dependent on the non-gravitational parameters used during the integration. After a few thousand years, the rate of change in inclination decreases, and after 20 000 yr the inclinations of those initial Jupiter family members that still have orbits with   P < 20 yr  become constant at about     , independent of whether non-gravitational forces are acting or not. The presently known Jupiter family of comets is losing members at the rate of one in every 67 yr. To maintain the family in equilibrium, Jupiter has to capture comets at a similar rate, and these captured comets have to be of low inclination to compensate for the pumping up of inclinations by gravitational perturbation.  相似文献   

12.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

13.
In this paper the effect of the Galactic tidal field on a Sun–comet pair will be considered when the comet is situated in the Oort cloud and planetary perturbations can be neglected. First, two averaged models were created, one of which can be solved analytically in terms of Jacobi elliptic functions. In the latter system, switching between libration and circulation of the argument of perihelion is prohibited. The non-averaged equations of motion are integrated numerically in order to determine the regions of the ( e ,  i ) phase space in which chaotic orbits can be found, and an effort is made to explain why the chaotic orbits manifest in these regions only. It is evident that for moderate values of semimajor axis, a ∼50 000 au , chaotic orbits are found for ( e <0.15 , 40°≤ i ≤140°) as determined by integrating the evolution of the comet over a period of 104 orbits. These regions of chaos increase in size with increasing semimajor axis. The typical e-folding times for these orbits range from around 600 Myr to 1 Gyr and thus are of little practical interest, as the time-scales for chaos arising from passing stars are much shorter. As a result of Galactic rotation, the chaotic regions in ( e ,  i ) phase space are not symmetric for prograde and retrograde orbits.  相似文献   

14.
We investigate the first stage of the dynamical evolution of Oort cloud comets entering the planetary region for the first time. To this purpose, we integrate numerically the motions of a large number of fictitious comets pertaining to two samples, both with perihelion distances up to 5.7 au and random inclinations; the first sample is composed of comets whose orbits have at least one node close to 5.2 au, while the second is not subject to this constraint. We examine the orbits when the comets come to aphelion after their first perihelion passage within the planetary region, and find that there is a clear statistical dependence of the energy perturbations on the Tisserand parameter. There appear to be two main processes, of comparable importance, governing the shortening of semimajor axes to values of less than 1000 au, i.e. planetary close encounters, especially with Jupiter, and indirect perturbations due to the shifting of the motion from barycentric to heliocentric and back; the former process mostly affects comets crossing the ecliptic at about 5.2 au, or on low-inclination orbits, while the latter mostly affects comets of small perihelion distance. This last result may help to understand the relative paucity of Halley-type comets with perihelion distances larger than about 1.5 au.  相似文献   

15.
We present the first measurements of the radiant and orbit of meteoroids that are part of the unusual Perseid activity called the 'Perseid Filament'. This filament was encountered by Earth in the years before and after the return of the comet to perihelion in December of 1992. Between 1989 and 1996, there were brief meteor outbursts of near-constant duration with a symmetric activity profile. In 1993, however, rates increased more gradually to the peak. That gradual increase is identified here as a separate dust component, which we call the 'Nodal Blanket'. We find that the Nodal Blanket has a very small radiant dispersion. On the other hand, the Perseid Filament has a radiant that is significantly dispersed and systematically displaced by 0.3°. This dispersion implies that unusually high ejection velocities or planetary perturbations must have had time to disperse the stream. In both cases, one would expect a rapid dispersion of matter along the comet orbit. In order to explain the concentration of dust near the comet position, we propose a novel scenario involving long-term accumulation in combination with protection of the region near the comet against close encounters with Jupiter due to librations of the comet orbit around the 1:11 mean-motion resonance.  相似文献   

16.
17.
We study the size and shape of low-density regions in the local Universe, which we identify in the smoothed density field of the PSCz flux-limited IRAS galaxy catalogue. After quantifying the systematic biases that enter the detection of voids using our data set and method, we identify, using a smoothing length of 5  h −1 Mpc, 14 voids within 80  h −1 Mpc (having volumes 103  h −3 Mpc3) and, using a smoothing length of 10  h −1 Mpc, eight voids within 130  h −1 Mpc (having volumes  8×103 h−3 Mpc3)  . We study the void size distribution and morphologies and find that there is roughly an equal number of prolate and oblate-like spheroidal voids. We compare the measured PSCz void shape and size distributions with those expected in six different cold dark matter (CDM) models and find that only the size distribution can discriminate between models. The models preferred by the PSCz data are those with intermediate values of   σ 8(≃0.83)  , independent of cosmology.  相似文献   

18.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

19.
20.
Abstract– To constrain the effects of capture modification processes, the size distribution of nanoscale refractory Fe‐Ni‐S inclusions (“droplets”) was measured in five allocations extracted from throughout the depth of Stardust Track 35. The Fe/S ratio has been previously shown to increase significantly with penetration depth in this track, suggesting increasing capture‐related modification along the track. Astronomical image analysis tools were employed to measure the sizes of more than 8000 droplets from TEM images, and completeness simulations were used to correct the distribution for detection bias as a function of radius. The size distribution characteristics are found to be similar within independent regions of individual allocations, demonstrating uniformity within grains. The size distribution of the Fe‐Ni‐S droplets in each allocation is dominated by a mode near 11 nm, but is coarse‐skewed and leptokurtic with a mean of ~17 nm and a standard deviation of ~9 nm. The size distribution characteristics do not vary systematically with penetration depth, despite the strong trend in bulk Fe/S ratio. This suggests that the capture modification process is not primarily responsible for producing the morphology of these nanoscale droplets. The Stardust Track 35 droplet size distribution indicates slightly smaller sizes, but otherwise resembles those in carbonaceous chondrite Acfer 094, and chondritic porous interplanetary dust particles that escaped nebular annealing of sulfides. The size distribution of metal‐sulfide beads in Stardust’s quenched melted‐grain emulsions appears to be inherited from the size distribution of unmelted sulfide mineral grains in comet‐dust particles of chondritic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号