共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper a cluster is modelled as a smooth potential (due to the cluster stars) plus the steady tidal field of the Galaxy. In this model there is a minimum energy below which stars cannot escape. Above this energy, however, the time-scale on which a star escapes varies with the orbital parameters of the star (mainly its energy) in a way which we attempt to quantify, with both theoretical arguments and computer simulations. Within the limitations of the model we show that the time-scale is long enough to complicate the interpretation of full N -body simulations of clusters, and that stars above the escape energy may remain bound to the cluster for about a Hubble time. 相似文献
2.
3.
Alisher S. Hojaev 《Journal of Astrophysics and Astronomy》2005,26(2-3):293-299
Preliminary results on observations of open clusters are presented. The project has been initiated in the framework of the
Uzbek-Taiwan and Taiwan-Baltic collaboration, mainly to upgrade and make use of facilities at Maidanak Observatory. We present
detailed, multiwavelength studies of the young cluster NGC 6823 and the associated complex nebulosity, to diagnose the young
stellar population and star formation history in the region. In addition, 7 compact open clusters have been monitored for
stellar variability. We show how observations like these could feasibly be used to look for exoplanet transit events. We also
expect to join the Whole-Earth Telescope effort in future campaigns for asteroseismology. 相似文献
4.
Jarrod R. Hurley 《Monthly notices of the Royal Astronomical Society》2007,379(1):93-99
There is currently much interest in the possible presence of intermediate-mass black holes (IMBHs) in the cores of globular clusters (GCs). Based on theoretical arguments and simulation results it has previously been suggested that a large core radius – or particularly a large ratio of the core radius to half-mass radius – is a promising indicator for finding such a black hole (BH) in a star cluster. In this study N -body models of 100 000 stars with and without primordial binaries are used to investigate the long-term structural evolution of star clusters. Importantly, the simulation data are analysed using the same processes by which structural parameters are extracted from observed star clusters. This gives a ratio of the core and half-mass (or half-light) radii that are directly comparable to the Galactic GC sample. As a result, it is shown that the ratios observed for the bulk of this sample can be explained without the need for an IMBH. Furthermore, it is possible that clusters with large core to half-light radius ratios harbour a BH binary (comprising stellar mass BHs) rather than a single massive BH. This work does not rule out the existence of IMBHs in the cores of at least some star clusters. 相似文献
5.
A. A. Mints P. Glaschke R. Spurzem 《Monthly notices of the Royal Astronomical Society》2007,379(1):86-92
We examine the scattering of single stars from an open star cluster. The probability of the capture of a star by a star cluster is dependent on the velocity and mass of the star, and the stars that are not captured experience a velocity change. For low-velocity stars there is an exponential decrease of the capture probability with the initial velocity, and the velocity change decreases almost linearly. For high-velocity stars there is a v −6 dependence for the capture probability, and a v −1 dependence for the velocity change. Analytical estimations, Monte Carlo and full N -body simulations are all in good agreement. 相似文献
6.
Mirek Giersz 《Monthly notices of the Royal Astronomical Society》2006,371(1):484-494
A revision of Stodółkiewicz's Monte Carlo code is used to simulate the evolution of million-body star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. All models consist of 1 000 000 stars. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods. During the evolution, the initial mass function (IMF) changes significantly. The local mass function around the half-mass radius closely resembles the actual global mass function. At the late stages of evolution, the mass of the evolved stars inside the core can be as high as 97 per cent of the total mass in this region. For the whole system, the evolved stars can compose up to 75 per cent of the total mass. The evolution of cluster anisotropy strongly depends on initial cluster concentration, IMF and the strength of the tidal field. The results presented are the first step in the direction of simulating the evolution of real globular clusters by means of the Monte Carlo method. 相似文献
7.
Daniel Malmberg Francesca De Angeli Melvyn B. Davies Ross P. Church Dougal Mackey Mark I. Wilkinson 《Monthly notices of the Royal Astronomical Society》2007,378(3):1207-1216
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood. 相似文献
8.
9.
10.
11.
Annabel Cartwright Anthony P. Whitworth 《Monthly notices of the Royal Astronomical Society》2009,392(1):341-345
We have previously reported a measure which both quantifies and distinguishes between a (relatively smooth) large-scale radial density gradient and multiscale (fractal) subclustering. Here, we extend the applicability of to clusters which deviate significantly from an overall circular shape.
varies systematically as clusters assume a more elongated shape, and it is therefore possible to correct for the effect, if the elongation of the cluster is also quantified. therefore remains a useful and robust analytical technique for classifying and quantifying the internal structure of star clusters, even when their overall shape is far from circular.
The corrections required are small for individual clusters which are not extremely elongated (not more than three times longer than they are wide) of the same order as the uncertainty in the value of for a particular cluster type. We therefore recommend that no correction be applied to the calculation of for individual clusters, unless they are more than three times longer than their width, but that correction for elongation be applied when is used for statistical analyses of large numbers of observed or simulated clusters. 相似文献
varies systematically as clusters assume a more elongated shape, and it is therefore possible to correct for the effect, if the elongation of the cluster is also quantified. therefore remains a useful and robust analytical technique for classifying and quantifying the internal structure of star clusters, even when their overall shape is far from circular.
The corrections required are small for individual clusters which are not extremely elongated (not more than three times longer than they are wide) of the same order as the uncertainty in the value of for a particular cluster type. We therefore recommend that no correction be applied to the calculation of for individual clusters, unless they are more than three times longer than their width, but that correction for elongation be applied when is used for statistical analyses of large numbers of observed or simulated clusters. 相似文献
12.
Conventional planet formation models via coagulation of planetesimals require timescales in the range of several 10 or even 100 Myr in the outer regions of a protoplanetary disk. But according to observational data, the lifetime of a protoplanetary disk is limited to about 6 Myr. Therefore the existence of Uranus and Neptune poses a problem. Planet formation via gravitational instability may be a solution for this discrepancy. We present a parameter study of the possibility of gravitationally triggered disk instability. Using a restricted N‐body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M⊙ can probably induce gravitational instabilities in the pre‐planetary solar disk for prograde passages with minimum separations below 80‐170 AU. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters. The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the formation of Uranus and Neptune. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
13.
14.
15.
16.
O. Racoveanu 《Astronomische Nachrichten》2014,335(8):877-885
In this study, a sample of orbits is considered in the framework of the planar circular restricted three‐body problem. In order to separate ordered from chaotic orbits three numerical methods are compared: the Largest Lyapunov Characteristic Exponent (LLCE) and the Smaller Alignment Index (SALI) provide a fairly good characterization of the chaotic motions, while the computational time required is of the same order; the Correlation Dimension (CD) has the advantage of correctly classifying sticky orbits, but at the expense of a longer computational time. In order to classify a given orbit, any pair of the three methods can be considered, but LLCE and SALI are recommended due to their speed. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
We present N -body simulations (including an initial mass function) of globular clusters in the Galaxy in order to study effects of the tidal field systematically on the properties of the outer parts of globular clusters. Using nbody6 , which correctly takes into account the two-body relaxation, we investigate the development of tidal tails of globular clusters in the Galactic tidal field. For simplicity, we have employed only the spherical components (bulge and halo) of the Galaxy, and ignored the effects of stellar evolution which could have been important in the very early phase of the cluster evolution. The total number of stars in our simulations is about 20 000, which is much smaller than the realistic number of stars. All simulations had been done for several orbital periods in order to understand the development of the tidal tails. In our scaled-down models, the relaxation time is sufficiently short to show the mass segregation effect, but we did not go far enough to see the core collapse, and the fraction of stars lost from the cluster at the end of the simulations is only ∼10 per cent. The radial distribution of extra-tidal stars can be described by a power law with a slope around −3 in surface density. The directions of tidal tails are determined by the orbits and locations of the clusters. We find that the length of tidal tails increases towards the apogalacticon and decreases towards the perigalacticon. This is an anti-correlation with the strength of the tidal field, caused by the fact that the time-scale for the stars to respond to the potential is similar to the orbital time-scale of the cluster. The escape of stars in the tidal tails towards the pericentre could be another reason for the decrease of the length of tidal tails. We find that the rotational angular velocity of tidally induced clusters shows quite different behaviour from that of initially rotating clusters. 相似文献
18.
J. van den Berk S. F. Portegies Zwart S. L. W. McMillan 《Monthly notices of the Royal Astronomical Society》2007,379(1):111-122
We simulate open clusters containing up to 182 stars initially in the form of singles, binaries and triples. Due to the high interaction rate a large number of stable quadruples, quintuples, sextuples and higher order hierarchies form during the course of the simulations. For our choice of initial conditions, the formation rate of quadruple systems after about 2 Myr is roughly constant with time at ∼0.008 per cluster per Myr. The formation rates of quintuple and sextuple systems are about half and one-quarter, respectively, of the quadruple formation rate, and both rates are also approximately constant with time. We present reaction channels and relative probabilities for the formation of persistent systems containing up to six stars. The reaction networks for the formation and destruction of quintuple and sextuple systems can become quite complicated, although the branching ratios remain largely unchanged during the course of the cluster evolution. The total number of quadruples is about a factor of 3 smaller than observed in the solar neighbourhood. 相似文献
19.
Michele Trenti Scott Ransom Piet Hut Douglas C. Heggie 《Monthly notices of the Royal Astronomical Society》2008,387(2):815-824
Though about 80 pulsar binaries have been detected in globular clusters so far, no pulsar has been found in a triple system in which all three objects are of comparable mass. Here, we present predictions for the abundance of such triple systems, and for the most likely characteristics of these systems. Our predictions are based on an extensive set of more than 500 direct simulations of star clusters with primordial binaries, and a number of additional runs containing primordial triples. Our simulations employ a number N tot of equal-mass stars from N tot = 512 to 19 661 and a primordial binary fraction from 0 to 50 per cent. In addition, we validate our results against simulations with N = 19 661 that include a mass spectrum with a turn-off mass at 0.8 M⊙ , appropriate to describe the old stellar populations of Galactic globular clusters. Based on our simulations, we expect that typical triple abundances in the core of a dense cluster are two orders of magnitude lower than the binary abundances, which in itself already suggests that we do not have to wait too long for the first comparable-mass triple with a pulsar to be detected. 相似文献
20.
A. D. Mackey M. I. Wilkinson M. B. Davies G. F. Gilmore 《Monthly notices of the Royal Astronomical Society》2008,386(1):65-95
In this study we present the results from realistic N -body modelling of massive star clusters in the Magellanic Clouds. We have computed eight simulations with N ∼ 105 particles; six of these were evolved for at least a Hubble time. The aim of this modelling is to examine in detail the possibility of large-scale core expansion in massive star clusters, and search for a viable dynamical origin for the radius–age trend observed for such objects in the Magellanic Clouds. We identify two physical processes which can lead to significant and prolonged cluster core expansion – mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster, and heating due to a retained population of stellar mass black holes, formed in the supernova explosions of the most massive cluster stars. These two processes operate over different time-scales and during different periods of a cluster's life. The former occurs only at early times and cannot drive core expansion for longer than a few hundred Myr, while the latter typically does not begin until several hundred Myr have passed, but can result in core expansion lasting for many Gyr. We investigate the behaviour of each of these expansion mechanisms under different circumstances – in clusters with varying degrees of primordial mass segregation, and in clusters with varying black hole retention fractions. In combination, the two processes can lead to a wide variety of evolutionary paths on the radius–age plane, which fully cover the observed cluster distribution and hence define a dynamical origin for the radius–age trend in the Magellanic Clouds. We discuss in some detail the implications of core expansion for various aspects of globular cluster research, as well as the possibility of observationally inferring the presence of a significant population of stellar mass black holes in a cluster. 相似文献