首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of an X2.7 solar flare, that occurred in a complex β γ δ magnetic configuration region on 3 November 2003 is discussed by utilizing a multi-wavelength data set. The very first signature of pre-flare coronal activity is observed in radio wavelengths as a type III burst that occurred several minutes prior to the flare signature in Hα. This type III burst is followed by the appearance of a loop-top source in hard X-ray (HXR) images obtained from RHESSI. During the main phase of the event, Hα images observed from ARIES solar tower telescope, Nainital, reveal well-defined footpoint (FP) and loop-top (LT) sources. As the flare evolves, the LT source moves upward and the separation between the two FP sources increases. The co-alignment of Hα with HXR images shows spatial correlation between Hα and HXR footpoints, whereas the rising LT source in HXR is always located above the LT source seen in Hα. The evolution of LT and FP sources is consistent with the reconnection models of solar flares. The EUV images at 195 Å taken by SOHO/EIT reveal intense emission on the disk at the flaring region during the impulsive phase. Further, slow-drifting type IV bursts, observed at low coronal heights at two time intervals along the flare period, indicate rising plasmoids or loop systems. The intense type II radio burst at a time in between these type IV bursts, but at a relatively greater height, indicates the onset of CME and its associated coronal shock wave. The study supports the standard CSHKP model of flares, which is consistent with nearly all eruptive flare models. More importantly, the results also contain evidence for breakout reconnection before the flare phase.  相似文献   

2.
VLF phase and amplitude measurements were made on five different frequencies at São Paulo, Brazil during a solar flare which occurred on 22nd January 1972. The phase and amplitude measurements during the decay phase of the flare were combined with the full wave solutions of Wait and Spies (1964) to calculate the recombination coefficient in the lower ionosphere. The values thus obtained are lower than those reported by Reid (1970), but are compatible with those reported by Montbriand et al. (1972) during Solar X-ray events. The effective loss rates have been utilized to calculate the ion-production at the maximum of the flare, which in turn has been utilized to calculate the incident X-ray flux as a function of wavelength at the maximum of the flare. Extensions to the calculations are discussed.  相似文献   

3.
We present the primary observations of the Solar X-ray Monitor (SXM) payload onboard the ChangE-1 lunar exploration satellite, which was launched on 24 October 2007. The SXM payload uses a solid-state silicon P-I-N photo-diode (Si-PIN) whose dynamic energy ranges from 1 keV to 10 keV. The long-term integrated spectra at different solar-activity levels as observed by the SXM are presented. By fitting these spectra with an optically thin plasma model, the two-minute temperature variation of the solar coronal plasma during a solar flare is also presented.  相似文献   

4.
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (ΔA) and amplitude time delay (Δt) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan–Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22° 27′N, 87° 45′E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δt). For the C-class flares we find that there is a direct correspondence between Δt of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δt for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ? max independent of these time slots, the goodness of fit, as measured by reduced-χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced-χ 2 seems to follow the variation of standard deviation of Z along the T x -R x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Δt and ? max was observed.  相似文献   

5.
When analyzing YOHKOH/SXT, HXT (soft and hard X-ray) images of solar flares against the background of plasma with a temperature T?6 MK, we detected localized (with minimum observed sizes of ≈2000 km) high-temperature structures (HTSs) with T≈(20–50) MK with a complex spatial-temporal dynamics. Quasi-stationary, stable HTSs form a chain of hot cores that encircles the flare region and coincides with the magnetic loop. No structures are seen in the emission measure. We reached conclusions about the reduced heat conductivity (a factor of ~103 lower than the classical isotropic one) and high thermal insulation of HTSs. The flare plasma becomes collisionless in the hottest HTSs (T>20 MK). We confirm the previously investigated idea of spatial heat localization in the solar atmosphere in the form of HTSs during flare heating with a volume nonlocalized source. Based on localized soliton solutions of a nonlinear heat conduction equation with a generalized flare-heating source of a potential form including radiative cooling, we discuss the nature of HTSs.  相似文献   

6.
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ~5 × 1010 erg cm?2 s?1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ~5. To independently test the model, we have calculated the microwave spectrum in the range 1–50 GHz that corresponds to the available radio observations.  相似文献   

7.
The mean density of the UV Cet-type flare stars in the solar neighbourhood is estimated. If differences of activity levels on different flare stars are taken into account, their summary flare activity is equivalent to 0.03 YZ CMi's flare activity per cubic parsec or to 4×1026 erg s–1 pc–3 in U-passband. From the X-ray flare observation on YZ CMi of 19.10.74 we estimate the luminosity of stellar flares in soft and intermediate X-ray. The ratio of X-ray to optical radiation for stellar flares is close to the respective ratio for strong solar chromospheric flares. It is shown the set of red-dwarf flare stars has all essential features of an ensemble of discrete X-ray sources to represent the galactic diffuse X-ray background.  相似文献   

8.
9.
The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10–100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated Hα flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30–44 keV range, but only one had flux at the 3σ level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.  相似文献   

10.
We consider temporal, spectral, and polarization parameters of the hard X-ray and gamma-ray radiation observed during the solar flare of May 20, 2002, in the course of experiments with the SONG and SPR-N instruments onboard the Coronas-F spacecraft. This flare is one of the most intense gamma-ray events among all of the bursts of solar hard electromagnetic radiation detected since the beginning of the Coronas-F operation (since July 31, 2001) and one of the few gamma-ray events observed during solar cycle 23. A simultaneous analysis of the Coronas-F and GOES data on solar thermal X-ray radiation suggests that, apart from heating due to currents of matter in the the flare region, impulsive heating due to the injection of energetic electrons took place during the near-limb flare S21E65 of May 20, 2002. These electrons produced intense hard X-ray and gamma-ray radiation. The spectrum of this radiation extends up to energies ≥7 MeV. Intense gamma-ray lines are virtually unobservable against the background of the nonthermal continuum. The polarization of the hard X-ray (20–100 keV) radiation was estimated to be ≤15–20%. No significant increase in the flux of energetic protons from the flare under consideration was found. At the same time, according to ACE data, the fluxes of energetic electrons in interplanetary space increased shortly (~25 min) after the flare.  相似文献   

11.
In the current solar cycle, the concentration of flare activity peaked during the period from October 19 to November 5, 2003, 3.5 years after the maximum point of the current solar-activity cycle. During this time, 56 high-(16) and medium-class flares occurred on the Sun, including 11 X flares. The flux of every such flare exceeded by a factor of 30 to 600 the 1–8 Å soft X-ray background flux of the entire Sun during flare-free periods. The disturbances caused by these flares produced six major S2-to S4-level proton events and four G1-to G5-class magnetic storms in the Earth’s space environment. Among the solar events observed were the most powerful X-ray flare of the current solar cycle, the eighth solar proton event in terms of particle flux during the entire history of observations, and the seventh magnetic storm in terms of Ap index. The most powerful flare resulted in the fastest coronal mass ejection during the current solar cycle with the solar plasma moving through interplanetary space at a velocity of 106 km/s, which is about four times higher than the average velocity. Severe magnetic storms during the period from September 29 through October 3 posed a lot of problems for research and technological satellites (Advanced Composition Explorer (ACE), Aqua, Chandra, Chips, Cluster, Geostationary Operational Environmental Satellites (GOES) 9, 10, and 12, etc.) and spacecraft in interplanetary space (Mars Explorer Rover and Microwave Anisotropy Probe). The Advanced Earth Observing Satellite 2 (ADEOS 2), a Japanese satellite for monitoring the Earth’s environment, was disabled at the time of the arrival of the powerful interplanetary shock from the superflare of October 28, 2003. During this period, the ISS astronauts were forced to escape into the aft part of the station five times, which ensured the strongest protection against radiation. This paper is dedicated to the study of the solar situation and individual flare events.  相似文献   

12.
We analyze the occurrence-frequency distributions of peak fluxes [P], total fluxes [E], and durations [T] of solar flares over the last three solar cycles (during 1980??C?2010) from SMM/HXRBS, CGRO/BATSE, and RHESSI hard X-ray data. From the synthesized data we find powerlaw slopes with mean values of ?? P =1.73±0.07 for the peak flux, ?? E =1.62±0.12 for the total flux, and ?? T =1.99±0.35 for flare durations. We find a tendency of an anti-correlation of the powerlaw slope of peak fluxes with the flare rate or sunspot number as a function of the solar cycle. The occurrence powerlaw slope is always steeper by ??????0.1 during a solar-cycle minimum compared with the previous solar-cycle maximum, but the relative amplitude varies for each cycle or instrument. Since each solar cycle has been observed with a different instrument, part of the variation could be attributed to instrumental characteristics and different event selection criteria used in generating the event catalogs. The relatively flatter powerlaw slopes during solar maxima could indicate more energetic flares with harder electron-energy spectra, probably due to a higher magnetic complexity of the solar corona. This would imply a non-stationarity (or solar-cycle dependence) of the coronal state of self-organized criticality.  相似文献   

13.
The new generation of multiwavelength radioheliographs with high spatial resolution will employ microwave imaging spectropolarimetry to recover flare topology and plasma parameters in the flare sources and along the wave propagation paths. The recorded polarization depends on the emission mechanism and emission regime (optically thick or thin), the emitting particle properties, and propagation effects. Here, we report an unusual flare, SOL2012-07-06T01:37, whose optically thin gyrosynchrotron emission of the main source displays an apparently ordinary mode sense of polarization in contrast to the classical theory that favors the extraordinary mode. This flare produced copious nonthermal emission in hard X-rays and in high-frequency microwaves up to 80 GHz. It is found that the main flare source corresponds to an interaction site of two loops with greatly different sizes. The flare occurred in the central part of the solar disk, which allows reconstructing the magnetic field in the flare region using vector magnetogram data. We have investigated the three possible known reasons of the circular polarization sense reversal – mode coupling, positron contribution, and the effect of beamed angular distribution. We excluded polarization reversal due to contribution of positrons because there was no relevant response in the X-ray emission. We find that a beam-like electron distribution can produce the observed polarization behavior, but the source thermal density must be much higher than the estimate from to the X-ray data. We conclude that the apparent ordinary wave emission in the optically thin mode is due to radio wave propagation across the quasi-transverse (QT) layer. The abnormally high transition frequency (above 35 GHz) can be achieved reasonably low in the corona where the magnetic field value is high and transverse to the line of sight. This places the microwave source below this QT layer, i.e. very low in the corona.  相似文献   

14.
We investigate the connections between the occurrence of major solar flares and subsurface dynamic properties of active regions. For this analysis, we select five active regions that produced a total of 11 flares with peak X-ray flux intensity higher than M5.0. The subsurface velocity fields are obtained from time–distance helioseismology analysis using SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) Doppler observations, and the X-ray flux intensity is taken from GOES (Geostationary Operational Environmental Satellites). It is found that among the eight amplitude bumps in the evolutionary curves of subsurface kinetic helicity, five (62.5%) of them had a flare stronger than M5.0 occurring within 8 hours, either before or after the bumps. Another subsurface parameter is the Normalized Helicity Gradient Variance (NHGV), reflecting kinetic helicity spread in different depth layers; it also shows bumps near the occurrence of these solar flares. Although there is no one-to-one correspondence between the flare and the subsurface properties, these observational phenomena are worth further studies to better understand the flares’ subsurface roots, and to investigate whether the subsurface properties can be used for major flare forecasts.  相似文献   

15.
Thomas N. Woods 《Solar physics》2014,289(9):3391-3401
The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is then exploited to estimate the frequency of EUV late-phase flares during the past four solar cycles. This study indicates that the frequency of EUV late-phase flares peaks before and after each solar-cycle minimum.  相似文献   

16.
We searched for solar neutrons using the data collected by six detectors from the International Network of Solar Neutron Telescopes and one Neutron Monitor between January 2010 and December 2014. We considered the peak time of the X-ray intensity of thirty five ≥ X1.0 class flares detected by GOES satellite as the most probable production time of solar neutrons. We prepared a light-curve of the solar neutron telescopes and the neutron monitor for each flare, spanning ± 3 h from the peak time of GOES. Based on these light curves, we performed a statistical analysis for each flare. Setting a significance level at greater than 3σ, we report that no statistically significant signals due to solar neutrons were found. Therefore, upper limits are determined by the background level and solar angle of these thirty five solar flares. Our calculation assumed a power-law neutron energy spectrum and an impulsive emission profile at the Sun. The estimated upper limits of the neutron emission are consistent within the order of magnitude of the successful detections of solar neutrons made in solar cycle 23.  相似文献   

17.
The height structure of a thick-target solar hard X-ray source is predicted for a beam injected vertically downward with a power-law spectrum and dominated by Coulomb collisional energy losses. This structure is characterised by the ratio of hard X-ray flux from an upper part of the source to that from the entire source, and is essentially a function only of the atmospheric column density ΔN (cm?2) in the upper region. These predictions are compared with the flux ratios at 150 keV and 350 keV observed by two spacecraft for five events in which the solar limb occults part of the source for one spacecraft. In three events the occulting levels h ranged from 0 to 2500 km. For these the theoretical and observed ratios are found to be comparable for values of ΔN in reasonable accord with those found at these altitudes by optical and UV spectroscopic modelling of flare chromospheres. In one event the occultation ratio was observed to rise after the burst peak and it is found that this rise is consistent with an increase in ΔN due to conductively driven chromospheric evaporation. However the energy dependence of the occultation ratio is not consistent with that predicted by the model and it is concluded that non-collisional losses must be significant in beam dynamics. In the other two events, the occultation level h was ? 25 000 km. For these the energy dependence of the occultation ratio is comparable with the model predictions. However the values of ΔN required demand extremely high coronal densities and/or acceleration altitudes. Furthermore, the one observed evolution of the occultation ratio is entirely inconsistent with the model. It is concluded that in these, bremsstrahlung emissions other than that from a beam must be important.  相似文献   

18.
The results of very low frequency (VLF) wave amplitude measurements carried out at the low latitude station Varanasi (geom. lat. 14°55′N, long. 154°E), India during solar flares are presented for the first time. The VLF waves (19.8 kHz) transmitted from the NWC-transmitter, Australia propagated in the Earth-ionosphere waveguide to long distances and were recorded at Varanasi. Data are analyzed and the reflection height H′ and the sharpness factor β are evaluated. It is found that the reflection height decreases whereas sharpness factor increases with the increase of solar flare power. The H′ is found to be higher and β smaller at low latitudes than the corresponding values at mid and high latitudes. The sunspot numbers were low during the considered period 2011–2012, being the rising phase of solar cycle 24 and as a result cosmic rays may impact the D-region ionosphere. The increased ionization from the flare lowers the effective reflecting height, H′, of the D-region roughly in proportion to the logarithm of the X-ray flare intensity from a typical mid-day unperturbed value of about 71–72 km down to about 65 km for an X class flare. The sharpness (β) of the lower edge of the D-region is also significantly increased by the flare but reaches a clear saturation value of about 0.48 km?1 for flares of magnitude greater than about X1 class.  相似文献   

19.
Based on the solar X-ray data in the band of 0.1??C?0.8?nm observed by Geostationary Operational Environmental Satellites (GOES), the XUV and EUV data in the bands of 26??C?34?nm and 0.1??C?50?nm observed by the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), a statistical analysis on the excess peak flux (the pre-flare flux is subtracted) in two SEM bands during M- and X-class flares from 1998 to 2007 is given. The average ratio of the excess peak flux to the pre-flare flux for the M-class flares is 5.5?%±3.7?% and that for the X-class flares is 16?%±11?%. The excess peak fluxes in two SEM bands are positively correlated with the X-ray flare class; with the increase in the X-ray flare class, the excess peak flux in two SEM bands increases. However, a large dispersion in the excess peak flux in the SEM bands and their ratio is found for the same X-ray flare class. The relationship between the excess peak fluxes of the two SEM bands also shows large dispersion. It is considered that the diversity we found in the flare spectral irradiance is caused by many variable factors related to the structure and evolution of solar flares.  相似文献   

20.
We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X- and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1 AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20 % of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, ≈?0.6. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient r=0.67±0.13, compared to the SEP events propagating in the standard solar wind, r=0.36±0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to what extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号