首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTION In the hierarchical clustering model, massive objects form by gravitational aggregation oflower-mass objects, and the disks in spiral galaxies like our Galaxy form by a late accretionof gas from an extended reservoir around the galactic halos. According to this scenario, spiralgalaxies are still growing at present. At the virial temperature of galactic halos, T r.-' io5 ?i06 K, the dominant cooling mech-anism is X-ray bremsstrahlung. If the cooling rate is significant, the…  相似文献   

2.
Using the stellar photometry catalogue based on the latest data release (DR4) of the Sloan Digital Sky Survey (SDSS), a study of the Galactic structure using star counts is carried out for selected areas of the sky. The sample areas are selected along a circle at a Galactic latitude of +60°, and 10 strips of high Galactic latitude along different longitudes. Direct statistics of the data show that the surface densities of ℓ from 180° to 360° are systematically higher than those of ℓ from 0° to 180°, defining a region of overdensity (in the direction of Virgo) and another one of underdensity (in the direction of Ursa Major) with respect to an axisymmetric model. It is shown by comparing the results from star counts in the ( g − r ) colour that the density deviations are due to an asymmetry of the stellar density in the halo. Theoretical models for the surface density profile are built and star counts are performed using a triaxial halo of which the parameters are constrained by observational data. Two possible reasons for the asymmetric structure are discussed.  相似文献   

3.
We detected a ring-like distribution of far-infrared (FIR) emission in the direction of the centre of the Virgo cluster (VC). We studied this feature in the FIR, radio and optical domains, and deduced that the dust within the feature reddens the galaxies in the direction of the VC but does not affect stars within the Milky Way. This is likely to be a dusty feature in the foreground of the VC, presumably in the Galactic halo. The H  i distribution follows the morphology of the FIR emission and shows peculiar kinematic behaviour. We propose that a highly supersonic past collision between an H  i cloud and the Galactic H  i formed a shock that heated the interface gas to soft X-ray temperatures. H  i remnants from the projectile and from the shocked Galactic H  i rain down on to the disc as intermediate-velocity gas.
Our finding emphasizes that extragalactic astronomy must consider the possibility of extinction by dust at high galactic latitude and far from the Galactic plane, which may show structure on 1° and smaller scales. This is particularly important for studies of the VC, e.g. in the determination of the Hubble constant from Cepheids in cluster galaxies.  相似文献   

4.
Large samples of field horizontal branch (FHB) stars make excellent tracers of the Galactic halo; by studying their kinematics, one can infer important physical properties of our Galaxy. Here we present the results of a medium-resolution spectroscopic survey of 530 FHB stars selected from the Hamburg/ESO survey. The stars have a mean distance of ∼7 kpc and thus probe the inner parts of the Milky Way halo. We measure radial velocities from the spectra in order to test the model of Sommer-Larsen et al., who suggested that the velocity ellipsoid of the halo changes from radially dominated orbits to tangentially dominated orbits as one proceeds from the inner to the outer halo. We find that the present data are unable to discriminate between this model and a more simple isothermal ellipsoid; we suggest that additional observations towards the Galactic Centre might help to differentiate them.  相似文献   

5.
LETTERS1 INTRODUCTIONIn the hierarchical scenario of structure formation, massive dark ha1os fOrm by gravitationalaggregation of individual low-mass objects, whi1e the stel1ar disks of spiral galaxies like theMilky Way form by accretion of gas which cools and falls onto the galaxies from an extendedsurrounding reservoir. FOr a massive galaxy of M ~ 10"MO, the surrounding gas can be heatedto temperature of T ~ 106 K by gravitational1y-driven shocks, the dominant cooling is thus dueto …  相似文献   

6.
We performed a photometric multicolour survey of the core of the Canis Major overdensity at     , reaching   V ∼ 22  and covering  0.3 × 1.0  arcmin2. The main aim is to unravel the complex mixture of stellar populations toward this Galactic direction, where in the recent past important signatures of an accretion event have been claimed to be detected. While our previous investigations were based on disjointed pointings aimed at revealing the large-scale structure of the third Galactic Quadrant, we now focus on a complete coverage of a smaller field centred on the Canis Major overdensity. A large wavelength baseline, in the UBVRI bands, allows us to build up a suite of colour–colour and colour–magnitude diagrams, providing a much better diagnostic tool to disentangle the stellar populations of the region. In fact, the simple use of one colour–magnitude diagram, widely employed in all the previous studies defending the existence of the Canis Major galaxy, does not allow one to separate the effects of the different parameters (reddening, age, metallicity and distance) involved in the interpretation of data, forcing to rely on heavy modelling. In agreement with our previous studies, in the same general region of the Milky Way, we recognize a young stellar population compatible with the expected structure and extension of the Local (Orion) and Outer (Norma–Cygnus) spiral arms in the Third Galactic Quadrant. Moreover, we interpret the conspicuous intermediate-age metal-poor population as belonging to the Galactic thick disc, distorted by the effect of strong disc warping at this latitude, and to the Galactic halo.  相似文献   

7.
The velocity dispersion of stars in the solar neighbourhood thin disc increases with time after star formation. Nordström et al. performed the most recent observations to constrain the age–velocity dispersion relation. They fitted the age–velocity dispersion relations of each Galactic cardinal direction space velocity component, U (towards the Galactic Centre), V (in the direction of Galactic rotation) and W (towards the North Galactic Pole), with power laws and interpreted these as evidence for continuous heating of the disc in all directions throughout its lifetime. We revisit these relations with their data and use the results of Famaey et al. to show that structure in the local velocity distribution function distorts the in-plane ( U and V ) velocity distributions away from Gaussian so that a dispersion is not an adequate parametrization of their functions. The age–σ W relation can however be constrained because the sample is well phase-mixed vertically. We do not find any local signature of the stellar warp in the Galactic disc. Vertical disc heating does not saturate at an early stage. Our new result is that a power law is not required by the data: disc heating models that saturate after ∼4.5 Gyr are equally consistent with observations.  相似文献   

8.
We present an analysis of UBVRI data from the selected area SA 141. By applying recalibrated methods of measuring ultraviolet excess (UVX), we approximate abundances and absolute magnitudes for 368 stars over 1.3 deg2 out to distances over 10 kpc. With the density distribution constrained from our previous photometric parallax investigations and with sufficient accounting for the metallicity bias in the UVX method, we are able to compare the vertical abundance distribution to those measured in previous studies. We find that the abundance distribution has an underlying uniform component consistent with previous spectroscopic results that posit a monometallic thick disc and halo with abundances of  [Fe/H]=−0.8  and −1.4, respectively. However, there are a number of outlying data points that may indicate contamination by more metal-rich halo streams. The absence of vertical abundance gradients in the Galactic stellar populations and the possible presence of interloping halo streams would be consistent with expectations from merger models of Galaxy formation. We find that our UVX method has limited sensitivity in exploring the metallicity distribution of the distant Galactic halo, owing to the poor constraint on the UBV properties of very metal-poor stars. The derivation of metallicities from broad-band UBV photometry remains fundamentally sound for the exploration of the halo but is in need of both improved calibration and superior data.  相似文献   

9.
Increasing evidence suggests that the Galactic halo is lumpy on kpc scales as a result of the accretion of at least a dozen small galaxies [Large and Small Magellanic Clouds (LMC/SMC), Sgr, Fornax, etc.]. Faint stars in such lumpy structures can significantly microlense a background star with an optical depth of 10−7–10−6, which is comparable to the observed value to the LMC. The observed microlensing events towards the LMC can be explained by a tidal debris tail from the progenitor of the Magellanic Clouds and Magellanic Stream. The LMC stars can either lense stars in the debris tail a few kpc behind the LMC, or be lensed by stars in the part of the debris tail in front of the LMC. The models are consistent with an elementary particle dominated Galactic halo without massive compact halo objects (MACHOs). They also differ from Sahu's LMC-self-lensing model by predicting a higher optical depth and event rate and lower concentration of events to the LMC centre.  相似文献   

10.
We present a new and completely general technique for calculating the fine-grained phase-space structure of dark matter (DM) throughout the Galactic halo. Our goal is to understand this structure on the scales relevant for direct and indirect detection experiments. Our method is based on evaluating the geodesic deviation equation along the trajectories of individual DM particles. It requires no assumptions about the symmetry or stationarity of the halo formation process. In this paper we study general static potentials which exhibit more complex behaviour than the separable potentials studied previously. For ellipsoidal logarithmic potentials with a core, phase mixing is sensitive to the resonance structure, as indicated by the number of independent orbital frequencies. Regions of chaotic mixing can be identified by the very rapid decrease in the real-space density of the associated DM streams. We also study the evolution of stream-density in ellipsoidal NFW haloes with radially varying isopotential shape, showing that if such a model is applied to the Galactic halo, at least 105 streams are expected near the Sun. The most novel aspect of our approach is that general non-static systems can be studied through implementation in a cosmological N -body code. Such an implementation allows a robust and accurate evaluation of the enhancements in annihilation radiation due to fine-scale structure such as caustics. We embed the scheme in the current state-of-the-art code gadget -3 and present tests which demonstrate that N -body discreteness effects can be kept under control in realistic configurations.  相似文献   

11.
A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8–13 μm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, ≲ 30 per cent, contrasts with that for local PNe, around ∼ 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values – except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.  相似文献   

12.
The halo structure at high Galactic latitudes near both the north and south poles is studied using Sloan Digital Sky Survey (SDSS) and SuperCOSMOS data. For the south cap halo, the archive of the SuperCOSMOS photographic photometry sky survey is used. The coincident source rate between SuperCOSMOS data in B J band from 16.5 to 20.5 mag and SDSS data is about 92 per cent, in a common sky area in the south. While that in the R F band is about 85 per cent from 16.5 to 19.5 mag. Transformed to the SuperCOSMOS system and downgraded to the limiting magnitudes of SuperCOSMOS, the star counts in the North Galactic Cap from SDSS show up to an  16.9 ± 6.3  per cent  asymmetric ratio (defined as relative fluctuations over the rotational symmetry structure) in the B J band, and up to  13.5 ± 6.7  per cent  asymmetric ratio in the R F band. From SuperCOSMOS B J and R F bands, the structure of the Southern Galactic hemisphere does not show the same obvious asymmetric structures as the northern sky does in both the original and downgraded SDSS star counts. An axisymmetric halo model with n = 2.8 and q = 0.7 can fit the projected number density from SuperCOSMOS fairly well, with an average error of about 9.17 per cent. By careful analysis of the difference of star counts between the downgraded SDSS northern halo data and SuperCOSMOS southern halo data, it is shown that no asymmetry can be detected in the South Galactic Cap at the accuracy of SuperCOSMOS, and the Virgo overdensity is likely a foreign component in the Galactic halo.  相似文献   

13.
We present MERLIN observations of Galactic 21-cm H  i absorption at an angular resolution of  ∼0.1–0.2  arcsec and a velocity resolution of 0.5 km s−1, in the direction of three moderately low latitude  (−8° < b < −12°)  extragalactic radio sources, 3C 111, 3C 123 and 3C 161, all of which are heavily reddened. H  i absorption is observed against resolved background emission sources up to ∼2 arcsec in extent and we distinguish details of the opacity distribution within 1–1.5 arcsec regions towards 3C 123 and 3C 161. This study is the second MERLIN investigation of small-scale structure in interstellar H  i (earlier work probed Galactic H  i in the directions of the compact sources 3C 138 and 3C 147). The 0.1-arcsec scale is intermediate between H  i absorption studies made with other fixed element interferometers with resolution of 1–10 arcsec and very long baseline interferometry studies with resolutions of 10–20 mas. At a scale of 1 arcsec (about 500 au), prominent changes in Galactic H  i opacity in excess of 1–1.5 are determined in the direction of 3C 161 with a signal-to-noise ratio of at least 10σ. Possible fluctuations in the H  i opacity at the level of about 1 are detected at the  2.5–3σ  level in the direction of 3C 123.  相似文献   

14.
We perform an evolutionary multivariate analysis of a sample of 54 Galactic globular clusters with high-quality colour–magnitude diagrams and well-determined ages. The four parameters adopted for the analysis are: metallicity, age, maximum temperature on the horizontal branch and absolute V magnitude. Our cladistic analysis breaks the sample into three novel groups. An a posteriori kinematical analysis puts groups 1 and 2 in the halo, and group 3 in the thick disc. The halo and disc clusters separately follow a luminosity–metallicity relation of much weaker slope than galaxies. This property is used to propose a new criterion for distinguishing halo and disc clusters. A comparison of the distinct properties of the two halo groups with those of Galactic halo field stars indicates that the clusters of group 1 originated in the inner halo, while those of group 2 formed in the outer halo of the Galaxy. The inner halo clusters were presumably initially the most massive one, which allowed the formation of more strongly helium-enriched second generation stars, thus explaining the presence of Cepheids and of very hot horizontal-branch stars exclusively in this group. We thus conclude that the 'second parameter' is linked to the environment in which globular clusters form, the inner halo favouring the formation of the most massive clusters which subsequently become more strongly self-enriched than their counterparts of the galactic outer halo and disc.  相似文献   

15.
Hypervelocity stars (HVSs) ejected by the massive black hole at the Galactic Centre have unique kinematic properties compared to other halo stars. Their trajectories will deviate from being exactly radial because of the asymmetry of the Milky Way potential produced by the flattened disc and the triaxial dark matter halo, causing a change of angular momentum that can be much larger than the initial small value at injection. We study the kinematics of HVSs and propose an estimator of dark halo triaxiality that is determined only by instantaneous position and velocity vectors of HVSs at large Galactocentric distances ( r ≳ 50 kpc). We show that, in the case of a substantially triaxial halo, the distribution of deflection angles (the angle between the stellar position and velocity vector) for HVSs on bound orbits is spread uniformly over the range 10°–180°. Future astrometric and deep wide-field surveys should measure the positions and velocities of a significant number of HVSs, and provide useful constraints on the shape of the Galactic dark matter halo.  相似文献   

16.
We compare orbits in a thin axisymmetric disc potential in Modified Newtonian Dynamics (MOND) with those in a thin disc plus near-spherical dark matter halo predicted by a ΛCDM cosmology. Remarkably, the amount of orbital precession in MOND is nearly identical to that which occurs in a mildly oblate CDM Galactic halo (potential flattening   q = 0.9  ), consistent with recent constraints from the Sagittarius stream. Since very flattened mass distributions in MOND produce rounder potentials than in standard Newtonian mechanics, we show that it will be very difficult to use the tidal debris from streams to distinguish between a MOND galaxy and a standard CDM galaxy with a mildly oblate halo.
If a galaxy can be found with either a prolate halo or one that is more oblate than   q ∼ 0.9  this would rule out MOND as a viable theory. Improved data from the leading arm of the Sagittarius dwarf – which samples the Galactic potential at large radii – could rule out MOND if the orbital pole precession can be determined to an accuracy of the order of  ±1°  .  相似文献   

17.
A by-product of the APM high-redshift quasar survey was the discovery of several distant (20–100 kpc) N-type carbon stars at high galactic latitude. Following on from this, we have started a systematic all-sky survey at galactic latitudes ⊢ b ⊢>30° to find further examples of these rare objects, and we report here on the results from the first season of follow-up spectroscopy. Faint, high-latitude carbon (FHLC) giants make excellent probes of the kinematic structure of the outer Galactic halo. Therefore, in addition to detailed spectrophotometry covering a wide wavelength range, we have obtained high-resolution (∼1 Å) spectra centred on the CN bands at ∼8000 Å, and have derived accurate (≲10 km s−1) radial velocities for the known FHLC stars. From the initial phase of our survey covering ≈6500 deg2, we find a surface density of faint N-type carbon stars in the halo of ≈1 per 200 deg2, roughly a factor of 4 less than the surface density of CH-type carbon stars in the halo. Intermediate-age, N-type carbon stars seem unlikely to have formed in the halo in isolation from other star-forming regions, and one possibility that we are investigating is that they either arise from the disruption of tidally captured dwarf satellite galaxies or are a manifestation of the long-sought optical component of the Magellanic Stream.  相似文献   

18.
Here we make a new study of the behaviour of the Na  i /K  i column density ratio in the interstellar medium, using a sample of new observations of 28 stars obtained at the Nordic Optical Telescope (NOT) in 1996 and 1997, and previously published observations (obtained by some of the authors) of 21 stars. The sightlines cover a range of distances and directions, including into the Galactic halo. We make use of new observations of the Na  i ultraviolet (UV) doublet for some 18 stars. This doublet is much weaker than the Na  i D doublet and so is less susceptible to saturation effects, and it is well known that it can be used to obtain more accurate Na  i column densities with a smaller error range. We find an average N (Na  i )/ N (K  i ) ratio from the Na  i UV data of about 90, which is rather higher than that found previously by Hobbs and Lequeux. The Na  UV–K  i   ratio shows a small increase in value with increasing column density, while we also find a sample of low N (Na  i )/ N (K  i ) ratio clouds generally seen towards distant objects on high-latitude sightlines that reach into the halo, so that the ratio decreases more sharply at lower column densities. As the values of the ratio for these halo clouds  (10–20)  bracket the cosmic Na/K abundance ratio, we suggest that these ratios result from a harder radiation field in the lower halo, such that the ionized fractions of Na  i and K  i become similar. Clearly caution needs to be applied in using any kind of 'standard value' for the Na  i /K  i column density ratio.  相似文献   

19.
New radio and X-ray data are reported for the rich cluster Abell 2319. This object is known from optical data to consist of two separate clusters, which are displaced by about 10′ in the NW direction, and could be in a pre-merger state.

In the radio domain, the cluster is characterized by the presence of a central diffuse halo source, more extended and powerful than the prototype halo in the Coma cluster. The radio halo shows an irregular structure, elongated in the NE-SW direction, and also extended towards the NW. We also report data on the extended radio galaxies located within the halo, or in its proximity.

The cluster X-ray brightness distribution shows an elongated structure towards the NW, in the radial region between 6′–12′, i.e. in the direction of the subcluster. This feature is exactly coincident with the NW extension of the radio halo. In addition, more substructural features are identified which could be due to an ongoing merger of the cluster with yet another mass component.

The radio halo morphology is correlated with the X-ray structure and the existence of merger processes in the cluster. The cluster merger can provide energy to maintain the radio halo, while the origin of the relativistic particles seems more problematic.  相似文献   


20.
Polarized diffuse emission observations at 1.4 GHz in a high Galactic latitude area of the Northern celestial hemisphere are presented. The  3.2 × 3.2 deg2  field, centred at  RA = 10h58m, Dec. =+42°18' (B1950)  , has Galactic coordinates   l ∼ 172°, b ∼+63°  and is located in the region selected as northern target of the Balloon-borne Radiometers for Sky Polarization Observations experiment. Observations have been performed with the Effelsberg 100-m telescope. We find that the angular power spectra of the E and B modes have slopes of  β E =−1.79 ± 0.13  and  β B =−1.74 ± 0.12  , respectively. Because of the very high Galactic latitude and the smooth emission, a weak Faraday rotation action is expected, which allows both a fair extrapolation to cosmic microwave background polarization (CMBP) frequencies and an estimate of the contamination by the Galactic synchrotron emission. We extrapolate the E -mode spectrum up to 32 GHz and confirm the possibility to safely detect the CMBP E -mode signal in the Ka band found in another low-emission region. Extrapolated up to 90 GHz, the Galactic synchrotron B mode looks to compete with the cosmic signal only for models with a tensor-to-scalar perturbation power ratio   T / S < 0.001  , which is even lower than the T / S value of 0.01 found to be accessible in the only other high Galactic latitude area investigated to date. This suggests that values as low as   T / S = 0.01  might be accessed at high Galactic latitudes. Such low-emission values can allow a significant redshift of the best frequency to detect the CMBP B mode, also reducing the contamination by Galactic dust, and opening interesting perspectives to investigate inflation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号