首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusion-controlled growth rates of polycrystalline enstatite reaction rims between forsterite and quartz were determined at 1,000 °C and 1 GPa in presence of traces of water. Iron-free, pure synthetic forsterite with normal oxygen and silicon isotopic compositions and quartz extremely enriched in 18O and 29Si were used as reactants. The relative mobility of 18O and 29Si in reactants and rims were determined by SIMS step scanning. The morphology of the rim shows that enstatite grows by a direct replacement of forsterite. Rim growth is modelled within a mass-conserving reference frame that implies advancement of reaction fronts from the initial forsterite-quartz interface in both directions. The isotopic compositions at the two reaction interfaces are controlled by the partial reactions Mg2SiO4=0.5 Mg2Si2O6+MgO at the forsterite-enstatite, and MgO+SiO2=0.5 Mg2Si2O6 at the enstatite-quartz interface, implying that grain boundary diffusion of MgO is rate-controlling. Isotopic profiles show no silicon exchange across the propagating reaction interfaces. This propagation, controlled by MgO diffusion, is faster than the homogenisation of Si by self-diffusion behind the advancing fronts. From this, and using % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaDa % aaleaacaWGtbGaamyAaiaacYcacaWGfbGaamOBaaqaaiaadAfacaWG % VbGaamiBaaaaaaa!3DD2! DSi,EnVolD_{Si,En}^{Vol} at dry conditions from the literature, results a % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmirayaafa % Waa0baaSqaaiaadofacaWGPbGaaiilaiaadweacaWGUbaabaaaaOGa % eqiTdqgaaa!3CCD! DSi,En dD'_{Si,En}^{} \delta value of 3᎒-24 m3 s-1 at 1,000 °C. The isotopic profiles for oxygen are more complex. They are interpreted as an interplay between the propagation of the interfaces, the homogenisation of the isotope concentrations by grain boundary self-diffusion of O within the rim, and the isotope exchange across the enstatite-quartz interface, which was open to 18O influx from quartz. Because of overlapping diffusion processes, boundary conditions are unstable and D´Ox,En' cannot be quantified. Using measured rim growth rates, the grain boundary diffusivity D´MgO' of MgO in iron-free enstatite is 8᎒-22 m3 s-1 at 1,000 °C and 1 GPa. Experiments with San Carlos olivine (fo92) as reactant reveal lower rates by a factor of about 4. Our results show that isotope tracers in rim growth experiments allow identification of the actual interface reactions, recognition of the rate-controlling component and further calculation of D´' values for specific components.  相似文献   

2.
In metapelites of the Saualpe complex (Eastern Alps) continuous 10 µm to 20 µm wide garnet reaction rims formed along biotite-plagioclase and biotite-perthite interfaces. The pre-existing mineral assemblages are remnants of low pressure high temperature metamorphism of Permian age. The garnet reaction rims grew during the Cretaceous eclogite facies overprint. Reaction rim growth involved transfer of Fe and Mg components from the garnet-biotite interface to the garnet-feldspar interface and transfer of the Ca component in the opposite direction. The garnets show complex, asymmetrical chemical zoning, which reflects the relative contributions of short circuit diffusion along grain boundaries within the polycrystalline garnet reaction rims and volume diffusion through the grain interiors on bulk mass transfer. It is demonstrated by numerical modelling that the spacing of the grain boundaries, i.e. the grain size of the garnet in the reaction rim is a first order control on its internal chemical zoning.  相似文献   

3.
In an effort to understand the kinetics of the thermal decarboxylation of acetate and the role of catalysis, a series of laboratory experiments were conducted to measure the rate constants for the decomposition of acetate (acetic acid and sodium acetate) in the presence of titanium, silica, stainless steel, gold, and magnetite. Activation energies for decarboxylation of acetic acid and acetate ion range from about 8 kcal mol−1 in stainless steel vessels to 69 kcal mol−1 in silica tubes. Extrapolated rate constants at 100°C for acetic acid differ by more than fourteen orders of magnitude between the experiments conducted in stainless steel and the catalytically least active titanium vessels. Gold and titanium were the least active catalysts for the acetic acid substrate, while stainless steel, silica, and magnetite showed marked catalytic effects. Methane and carbon dioxide were the predominant reaction products of most of these experiments, although mass spectrometric analyses of the gas phase revealed concentrations of carbon monoxide and hydrocarbons (apparent mass range from 29 to 56) amounting to as much as 55 mole percent of the total volatile products, depending on the catalyst. The reactions were generally first order in acetic acid or acetate ion, except for those involving the acid over silica and magnetite which were zero order. These results and the observed effects of variations in surface area are rationalized in terms of changes in the mode of surface catalysis. The mechanistic assignment is simplified by the existence of three unique straight lines on an isokinetic plot (i.e., activation enthalpy versus activation entropy) which fit all the respective first- and zeroorder reactions. The results described here provide the nucleus for the discussion in Part II of the role of acetate in the primary migration of methane and the transportation of metals in hydrothermal solutions.  相似文献   

4.
The decomposition reaction of kaolinite has been investigated as a function of the defectivity of the starting material and the temperature of reaction. Time resolved energy-dispersive powder diffraction patterns have been measured using synchrotron radiation, both under a constant heating rate (heating rates from 10 to 100° C/min) and in isothermal conditions (in the temperature range 500 to 700° C). The apparent activation energy of the dehydroxylation process is different for kaolinites exhibiting a different degree of stacking fault density. The results of the analysis of the kinetic data indicate that the starting reaction mechanism is controlled by diffusion in the kaolinite particle. The diffusion process is dependent on the defective nature of both kaolinite and metakaolinite. At high temperatures, and at higher heating rates, the reaction mechanism changes and the resistance in the boundary layer outside the crystallites becomes the rate-limiting factor, and nucleation begins within the reacting particle. During the final stage of the dehydroxylation process the reaction is limited by heat or mass transfer, and this might be interpreted by the limited diffusion between the unreacted kaolinite domains and the metakaolinite matrix.  相似文献   

5.
There are an increasing number of studies that focus on the systematics of the distribution of Li and its isotopes among different geochemical reservoirs. These studies have found that Li is relatively mobile compared to many other elements (e.g., Fe, Mg), and diffusion has been considered as a mechanism to generate large isotopic fractionations even at high temperatures. In order to quantify some of these aspects, we have measured Li diffusion rates experimentally along [0 0 1] of single crystals of olivines from San Carlos, Arizona and Pakistan, at 800-1200 °C at a total pressure of 100 kPa and fO≈ WM buffer. A complex diffusion behavior of Li is observed, indicating that two mechanisms of diffusion (a fast and a slower one) operate simultaneously. The behavior is well described by a model that partitions Li between two different sites in olivine - an octahedral site (LiMe) and an interstitial site (Lii). Transport of Li is a combination of hopping within and between each of these kinds of sites involving also vacancies on the octahedral site (VMe). It is assumed that the homogeneous reaction (LiMe = VMe + Lii) that maintains equilibrium distribution of Li between the sites is instantaneous compared to the timescales of all other processes associated with diffusive transport. One consequence of this mode of transport of Li in olivine is that the shape and length of diffusion profiles depend on the boundary conditions imposed at the surface of a crystal; i.e., the chemical environment (e.g., fO2, aLi4SiO4), in addition to temperature and pressure. Our model describes the variable experimentally determined Li-profile shapes produced at different temperatures and with different boundary conditions, as well as their time evolution, quantitatively. Modeling the observed isotopic fractionation shows that 6Li diffuses about 5% faster than 7Li on the interstitial site. Inspection of published data on Li distribution in natural olivines that are available until now indicates that the fast (interstitial) mechanism of Li diffusion is unlikely to be dominant in most natural systems; Li rich, oxidizing environments (e.g., fluids?) may be exceptions. However, when it operates it can decouple the equilibration of Li isotopic gradients from the time scale of equilibration of overall Li concentrations. Diffusion dominated by the slower mechanism will occur on the average at a rate that is about an order of magnitude faster than diffusion of Fe, Mg and most other divalent cations in olivine; such diffusion of Li in olivine will be much slower than the rates of diffusion in clinopyroxene and plagioclase crystals at the same conditions. Fractionation of isotopes of Li by diffusion is likely to be a transient phenomenon and is more likely to be observed in crystals showing zoning of Li concentrations.  相似文献   

6.
The effect of pH on the kinetics of tremolite and anthophyllite dissolution was investigated at 25 °C in batch reactors over the pH range of 1–13.5, in inorganic buffered solutions. Dissolution rates were obtained based on the release of Si and Mg. Results obtained in this study show different behaviors for both minerals. For tremolite, dissolution rates show a noticeable dependence on pH between 1 and 8, decreasing as pH increases and reaching a minimum around neutral conditions. At basic pH this dependence becomes even stronger, but dissolution takes place together with collateral effects of saturation and carbonation. A preferential release of Ca and Mg is observed in acid media, lowering the Mg/Si ratio to the extent that Mg solubility decreases with pH. For anthophyllite, dissolution rates also show a strong dependence on pH, between 1 and 9.5. At the same pH, anthophyllite dissolves up to 8 times faster than tremolite. For pH > 9.5 this dependence is smooth, and it is probably associated with effects of saturation and carbonation. Dissolution is also non-stoichiometric with a faster release of Mg with respect to Si in acid media. SEM observations show differences in the breakage mechanism of the fibers. The anthophyllite particle breakage during dissolution consists of the splitting of bundle fibers parallel to the fiber longitudinal direction. However, for tremolite, other than fiber splitting, particles shorten induced by coalescence of etch pits developed perpendicular to c axe.  相似文献   

7.
Transmission electron microscopy (TEM) was used to study the microtextural and mineralogical characteristics of fine-grained rims in the unbrecciated CM2 chondrites, Y-791198 and ALHA81002, in an effort to provide constraints on the origins of the rims themselves. Our TEM observations show that the rims in Y-791198 are composed of two distinct types of region, sulfide-poor and sulfide-rich, that are intermixed in a complex manner at the micron to submicron level. The sulfide-poor regions are largely composed of amorphous silicate material or nanocrystalline serpentine, but rare fibrous and coarse-grained serpentine grains have also been identified. No fine-grained cronstedtite or tochilinite were observed, although coarse-grained lumps of tochilinite are present in the rims. In contrast, the sulfide-rich regions are characterized by the presence of a myriad, nanometer-sized Fe, Ni sulfide grains (pentlandite with some Ni-rich pyrrhotite) embedded within an amorphous silicate similar in composition to that of the sulfide-poor regions. The sulfide-rich regions also contain rare phases such as olivine, and Fe, Ni metal grains with grain sizes that are always >100 nm in size. Z-contrast scanning transmission electron microscopy (STEM) reveals that the fine-grained rims consist of a mosaic of irregularly-shaped sulfide-poor and sulfide-rich-regions with sizes of about 0.2-0.5 μm, that have been compacted together during parent body lithification. Despite aqueous alteration, the distinct mineralogical characteristics of these different regions are preserved on a fine-scale and probably represent primitive heterogeneity in the dust from which these rims formed.Serpentine is much better developed and more widespread in the fine-grained rims of ALHA81002 than Y-791198. Complex mats of serpentine fibers are commonly found and cronstedtite and tochilinite are plentiful. Anhydrous minerals such as olivine are rare and have usually been replaced by serpentine. Like Y-791198, all the fine-grained rims studied in ALHA81002 show the same mineral assemblages and textural characteristics throughout and between rims. The homogeneity of the mineralogy, textural relationships and degree of hydration in the rims of these two chondrites is more consistent with parent-body alteration than with pre-accretionary alteration.  相似文献   

8.
A new condensation sequence appears if the CO ratio in a gas of otherwise solar composition is increased by less than a factor of two. As the ratio increases from the solar value of 0.6 to ? 1 the gas becomes extremely reduced, the condensation temperatures of silicates and oxides are depressed markedly ~ 400 K and a new suite of refractory minerals appears: AIN, CaS, MgS, SiC, TiN, graphite, Si2N2O and probably metastable (Fe,Ni)3C. Many of these minerals are unique to enstatite chondrites and may be analogues of the refractory silicates and oxides found in more oxidized meteorites such as Allende.The change in chemistry is related to the stability of CO, the most stable C or O compound at high T. Since the elements occur in a 1:1 ratio in CO, only the element which is in excess is free to form other compounds. But as T decreases CO reacts with H2 to form graphite, CH4 or other hydrocarbons thereby freeing O to form H2O. If equilibrium is maintained oxides and silicates form at about 1000 K (CO > 1, Pτ = 10?4atm) as products of reactions among the carbides, nitrides, sulfides and the gas. The possibility that equilibrium was not maintained among the C-bearing species was also investigated. If either graphite or CH4 does not form as predicted the stability fields of the reduced minerals expands to lower temperatures. If neither graphite nor CH4 form as predicted, CO remains stable and the nebular gas is highly reduced at all temperatures.Enstatite chondrites appear to have originated in a region of the nebula where the CO ratio was somewhat higher than the solar value. Various fractionation mechanisms are considered. An interesting possibility is that graphite, which is quite refractory under a wide range of conditions, survived the collapse of the solar nebula.  相似文献   

9.
Using a DIA-type, cubic-anvil, high-pressure apparatus (SAM-85) in conjunction with in situ X-ray diffraction, we have investigated phase relations between coesite and stishovite up to 12 GPa and 1530 °C using synthetic powders of the two phases as the starting materials. The phase transition between coesite and stishovite was identified by observing the first appearance of a phase that did not already exist or by a change in the relative intensity of the two patterns. In most experiments, the diffraction patterns on samples were collected within 10 minutes after reaching a pressure and temperature condition. On this time scale, two phase boundaries associated with the coesite-stishovite transition have been determined: (1) for the stishovite-to-coesite transition, observations were made in the temperature range of 950–1530 °C, and (2) for the coesite-to-stishovite transition from 500 to 1300 °C. These observations reveal that there exists a critical temperature of about 1000 °C to constrain the coesite-stishovite equilibrium phase boundary. Above this temperature, both boundaries are linear, have positive dP/dT slopes, and lie within a pressure interval of 0.4 GPa. Below this temperature, the dP/dT slope for the stishovite-to-coesite phase boundary becomes significantly larger and that for the coesite-tostishovite phase boundary changes from positive to negative. As a result, an equilibrium phase boundary can only be determined from the results above 1000 °C and is described by a linear equation P (GPa)=6.1 (4)+ 0.0026 (2) T (°C). This dP/dT slope is in good agreement with that of Zhang et al. (1993) but more than twice that of Yagi and Akimoto (1976). For the kinetics of the phase transition, preliminary rate data were obtained for the stishovite-to-coesite transition at 1160 and 1430 °C and are in agreement with the simple geometric transformation model of Avrami and Cahn.  相似文献   

10.
In this study the physico-chemical, titration and sorption characteristics of Na-illite du Puy (Na-illite) have been measured and modelled. Samples of illite, collected in the region of le Puy-en-Velay, France, were purified and conditioned to the Na-form and physico-chemically characterised. Potentiometric titrations on suspensions of the Na-illite were carried out using a batch backtitration technique in 0.01, 0.1 and 0.5 M NaClO4 background electrolytes from pH∼3 to ∼11.5 in an inert atmosphere glove box. The supernatant solutions from each titration experiment in each series were analysed for K, Mg, Ca, Sr, Si, Al, Fe and Mn. The titration data were modelled in terms of the protolysis of two amphoteric edge sites (SW1OH and SW2OH) without an electrostatic term. Sorption edges (solid/liquid distribution ratios versus pH at trace sorbate concentrations and constant ionic strength) were determined for the transitions metals Ni(II) and Co(II), the lanthanide Eu(III), and the heavy metal Sn(IV) on Na-illite with NaClO4 as the background electrolyte under anoxic conditions (CO2 ? 2 ppm, O2 ? 2 ppm). The study thus encompasses a broad range of metals with different thermodynamic characteristics and with valence states ranging from II to IV. The results from the modelling of the titration data, in combination with a non electrostatic surface complexation and cation exchange sorption model were applied to quantitatively describe the uptake characteristics of the metals listed above on Na-illite. Since sorption edges were measured at trace concentrations, metal uptake was modelled as occurring on strong type sites (SSOH) only. This sorption model, the two site protolysis non electrostatic surface complexation and cation exchange model (2SPNE SC/CE model) had been previously developed and used to describe metal uptake on montmorillonite.  相似文献   

11.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

12.
化学刺激能够改善增强型地热系统(EGS)热储层裂隙连通情况、提高裂隙渗透率。本文以EGS热储化学刺激为出发点,开展土酸体系-花岗岩作用实验,总结实验规律,明确了酸岩作用机理,建立多矿物耦合反应动力学模型并获取重要参数。得出以下结论:土酸中HF浓度越高,对花岗岩的溶蚀率和溶蚀速率就越大,但更易产生二次沉淀;酸液中离子的浓度与不同矿物溶蚀存在对应关系,Na+和K+分别来自于钠长石和伊利石,Al3+和硅来自长石类和黏土类矿物,Ca2+前期来自方解石,后期受钙长石和氟石影响;土酸-花岗岩反应为双重机制控制下的动力学反应;HF机制下的矿物溶解反应速率常数数量级约为10-4~10-5,比中性机制下的矿物的溶解速率提高了约9个数量级。研究结果可以为EGS储层化学刺激工作提供理论支持。  相似文献   

13.
The flotation rate from the slurry to the froth of a strongly hydrophobic galena and weakly conditioned chalcopyrite were determined in a batch experimental flotation cell, as a function of air flow rate (AFR). The selectivity of the transfer from the slurry to the froth was found to be highest at intermediate AFR, and lowest at very low or very high AFR. The flotation rate of a strongly conditioned magnetite-galena mixture was investigated in the same cell as a function of AFR and froth thickness (FT). The rate constant which characterizes the transfer rate from the froth over the cell lip was found to be identical for both minerals within experimental errors.  相似文献   

14.
The weather systems that predominantly affect the eastern and northeastern parts of India during the pre-monsoon summer months (March, April and May) are severe thunderstorms, known as Nor’westers. The storms derive their names from the fact that they frequently strike cities and towns in the southern part of West Bengal in the afternoon from the north-west direction while traveling far from its place of genesis over the Bihar plateau. The storms are devastating in nature particularly due to strong (gusty) winds, heavy rains and hails associated with it. Although these storms are well known for its power of causing damages, studies on them are relatively few due to their small size and sparse network of observations. To address this important issue, the evolution of two Nor’westers of 12 March and 22 May 2003 over Kolkata is studied in detail in this paper using hourly Doppler weather radar (DWR) observations and high resolution Meteosat-5 imageries. In addition, supporting meteorological reports are used to find the large scale conditions that influence the moisture convergence and vertical wind shear. The genesis of both the storms is found to be over Bihar-Jharkhand region and beyond the range of the DWR. The satellite observations are found to be useful in identifying the location and initiation of the storms. The movements of the storms are captured by the DWR estimated vertical cross-section of reflectivities. The Doppler estimate shows that the 12 March storm had a vertical extent of about 10–12 km at the time of maturity and that of 22 May reaching up to 18 km signifying deep convection associated with these events. The genesis, maturity and dissipation are well brought out by the hourly DWR and satellite imageries. The DWR observations suggest that the systems move at a speed of 20–25 m/s. The DWR estimated precipitation shows a detailed spatial distribution around Kolkata with several localized zones of heavy rain and this is found to be well supported by the nearby station observations. This study establishes that DWR observations along with hourly satellite imageries are able to capture the evolution of Nor’westers. The study also shows that the composite DWR-satellite information is a reliable tool for nowcasting the location, time and path of movement of Nor’westers. Based on these observations, a conceptual model of the Nor’wester is proposed.  相似文献   

15.
The disordering kinetics of Al/Si in albite depend on how the samples are dried, and thus on the presence of trace amounts of water. The disordering rate increases with water content and confining pressure. At 10 kb the activation energy is about 67 kcal/mole compared to about 87 kcal/mole for samples disordered in air. Simultaneous plastic deformation increases the disordering rate and the effect is most pronounced below 900° C at 10?6/s. Some albite ordering and microcline disordering experiments show similar kinetic behavior. These results are significant for interpreting the structural state and the high-temperature deformation of feldspars.  相似文献   

16.
The influence of background electrolytes on the mechanism and kinetics of calcite dissolution was investigated using in situ Atomic Force Microscopy (AFM). Experiments were carried out far from equilibrium by passing alkali halide salt (NaCl, NaF, NaI, KCl and LiCl) solutions over calcite cleavage surfaces. This AFM study shows that all the electrolytes tested enhance the calcite dissolution rate. The effect and its magnitude is determined by the nature and concentration of the electrolyte solution. Changes in morphology of dissolution etch pits and dissolution rates are interpreted in terms of modification in water structure dynamics (i.e. in the activation energy barrier of breaking water-water interactions), as well as solute and surface hydration induced by the presence of different ions in solution. At low ionic strength, stabilization of water hydration shells of calcium ions by non-paired electrolytes leads to a reduction in the calcite dissolution rate compared to pure water. At high ionic strength, salts with a common anion yield similar dissolution rates, increasing in the order Cl < I < F for salts with a common cation due to an increasing mobility of water around the calcium ion. Changes in etch pit morphology observed in the presence of F and Li+ are explained by stabilization of etch pit edges bonded by like-charged ions and ion incorporation, respectively. As previously reported and confirmed here for the case of F, highly hydrated ions increased the etch pit nucleation density on calcite surfaces compared to pure water. This may be related to a reduction in the energy barrier for etch pit nucleation due to disruption of the surface hydration layer.  相似文献   

17.
Quaternary and directly underlying Late Miocene (Pannonian) outcrops were analysed by structural, tectono-morphologic and sedimentologic methods to describe the main fault directions, to separate mass movements from faulting and folding and to separate earthquake-induced sediment deformations from other (e.g. periglacial) effects in the Somogy Hills. This is a gentle hilly area elevated at 200–300 m above sea level, located immediately south of Lake Balaton, Hungary.

Quaternary outcrops showed several consistent directions of faulting, and co-depositional seismic activity. Three different Mohr-sets of faults/joints could be differentiated in Quaternary sediments. The three sets are considered Late Quaternary since all cut young loess sections and have morphological expressions.

On the basis of the microtectonic measurements and morphotectonic investigations, the following sequence of Quaternary events can be proposed:

1. A (W)NW–(E)SE compression and perpendicular extension would create E–W to WNW–ESE oriented right lateral, NNW–SSE to N–S oriented left lateral shear zones, and NW–SE striking normal faults. Some of these can be evidenced in morphology and among the individual fault measurements. Some reactivated faults might suggest that this field is a relatively older one, but fresh topographic elements suggest that this stress field might be operational sub-recently.

2. A second stress field with NNW–SSE extensional and ENE–WSW oriented compressional directions could be separated. This stress field could create NNE–SSW and NW–SE oriented shear fractures and ENE–WSW oriented conjugate normal faults. Flat thrusts giving ENE directed shear may also be active under this field.

3. A third stress field might be proposed with N–S compression and perpendicular extension directions. This would create NE–SW and NW–SE oriented shear fractures, which are observed in the measured fault data. It is remarkable that the NE–SW faults are all steep, subvertical, and give a very well defined fault set. Based on the fresh topographic expression, this stress field is also sub-recent.

The different sub-recent stress fields and related fault patterns might succeed each other or might alternate through time. The first and third deformations have fresh topographic expressions and cannot play synchronously. The observed features suggest a compressionally active neotectonics of the study area.  相似文献   


18.
This paper describes the distribution of Fe and Ni between the octahedral and tetrahedral sites in pentlandite (Fe,Ni)9S8. The dependence of the distribution on pressure and temperature and the activation energy of the cation exchange reaction were determined through annealing experiments. Synthetic crystals were annealed at 433–723 K and pressures up to 4 GPa, and natural crystals were annealed at 423, 448 and 473 K in evacuated silica capillary tubes for various durations. The cation distributions in the synthetic crystals were determined with an X-ray powder method employing the anomalous dispersion effect of CuK. and FeK radiations, while those of natural crystals were calculated from the cell dimensions. The values of U, S and V for the Fe/Ni exchange reaction are –6818 J mol–1, 20.52 J K–1 mol–1, and 6.99 × 10–6 m3 mol–1, respectively. The dependence of the Fe/Ni distribution on pressure (Pa) and temperature (Kelvin) was determined as lnK = 2.47+8.20 × 102 T –1+8.41 x 10–7 T –1 P, where K = (Fe/Ni)octahedral /(Fe/Ni)tetrahedral. The activation energy of the cation exchange reaction was 185 kJ mol–1.  相似文献   

19.
The granulites of the Saxon Granulite Massif equilibrated athigh pressure and ultrahigh temperature and were exhumed inlarge part under near-isothermal decompression. This raisesthe question of whether P–T–t data on the peak metamorphismmay still be retrieved with confidence. Felsic and mafic granuliteswith geochronologically useful major and accessory phases haveprovided a basis to relate P–T estimates with isotopicages presented in a companion paper. The assemblage garnet +clinopyroxene in mafic granulite records peak temperatures of1010–1060°C, consistent with minimum estimates ofaround 967°C and 22·3 kbar obtained from the assemblagegarnet + kyanite + ternary feldspar + quartz in felsic granulite.Multiple partial overprint of these assemblages reflects a clockwiseP–T evolution. Garnet and kyanite in the felsic granulitewere successively overgrown by plagioclase, spinel + plagioclase,sapphirine + plagioclase, and biotite + plagioclase. Most ofthis overprinting occurred within the stability field of sillimanite.Garnet + clinopyroxene in the mafic granulite were replacedby clinopyroxene + amphibole + plagioclase + magnetite. Thehigh P–T conditions and the absence of thermal relaxationfeatures in these granulites require a short-lived metamorphismwith rapid exhumation. The ages of peak metamorphism (342 Ma)and shallow-level granitoid intrusions (333 Ma) constrain thetime span for the exhumation of the Saxon granulites to  相似文献   

20.
The shapes of sills and laccolithic intrusions and associated host rock deformation were studied at several locations on the flanks of the Henry Mountains. Diorite sills range from 0.5 to 10 m in thickness, are less than 1 km2 in areal extent, and have blunt terminations. The laccolithic intrusions range from 10 to 200 m in thickness, and from 1 to 3 km2 in areal extent. The host rock, principally sandstone and shale, is deformed along closely spaced cataclastic shear planes. This deformation is concentrated at contacts, especially near sill terminations and over laccolith peripheries. The diorite contains plagioclase phenocrysts which are usually sheared in a thin zone adjacent to each contact. Field observations suggest that sills are the forerunners of laccolithic intrusions which form only after magma has spread far enough laterally (greater than about 1 km2 in the Henry Mountains) to gain leverage to bend the overburden upward. Further injection of magma results in laccolithic peripheries or terminations with one of three distinct cross-sectional forms: (1) blunt termination of the diorite accompanied by bending and minor faulting of the host rock; (2) termination at a peripheral diorite dike cutting upward across the host rock; or (3) abrupt termination of the diorite against a nearly vertical fault zone.In order to study some of the processes of sill and laccolith intrusion, mechanical models for the driving pressure, physical properties, and flow behavior of the diorite magma are derived and discussed. A static driving pressure (equal to the difference between total magma pressure and lithostatic pressure) of up to 700 bar is estimated. The rheological behavior of the magma in the Henry Mountains is unknown. However, flow behavior is calculated assuming three of the more common models for fluids: Newtonian viscous, pseudoplastic, and Bingham. Suspended crystals probably contributed to the finite strength of the magma (estimated to be at least 103 dyn/cm2 for the Henry Mountains magma) which enables it to support dense zenoliths and also fixes maximum limits on the lengths of sills or dikes. Pressure in magma flowing along tabular intrusions of uniform thickness drops linearly in the flow direction for all three rheological materials. Thickening of tabular intrusions tends to make the pressure drop less rapidly, but pressure drops more rapidly in the tapered region near a termination. Pressure distributions under these and other conditions are derived in order to use them in the models of host rock deformation presented in Part II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号