首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8–13 μm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, ≲ 30 per cent, contrasts with that for local PNe, around ∼ 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values – except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.  相似文献   

2.
We have analysed the near-infrared (NIR) and far-infrared (FIR) colours of MASH I and MASH II (the Macquarie/AAO/Strasbourg surveys) planetary nebulae (PNe), using data deriving from the Two-Micron All-Sky Survey and Infrared Astronomical Satellite . We were able to identify ∼5 per cent of the sources in the NIR, and a slightly larger fraction (∼12 per cent) in the FIR. It is concluded that whilst the NIR colours of these nebulae are consistent with those of less evolved (and higher surface brightness) PNe, their FIR colours are markedly different. This disparity is likely to arise as a result of an evolution in dust temperatures, in their line emission characteristics, and in the relative contributions of the 8.6 and 11.3 μm polycyclic aromatic hydrocarbon emission features. A rump of ∼9 per cent of the detected sources have values  log[ F (25 μm)/ F (60 μm)]  which are lower than can be explained in terms of normal nebular evolution, however. If these are comparable in nature to the undetected PNe, then this would argue that ∼1 in 10 of MASH I and II nebulae may represent galactic H  ii regions, Stromgren spheres, symbiotic nebulae or other unrelated categories of source.  相似文献   

3.
We have undertaken a mid-infrared (MIR) search for new planetary nebulae (PNe) using the Spitzer Space Telescope GLIMPSE Galactic plane survey. This has involved searching extant GLIMPSE data products for morphologically appropriate structures, and investigating sources having IRAS colours similar to those of Galactic PNe. We have found 12 sources which have a high probability of being high-extinction PNe, and which possess MIR and IRAS colours, and shell morphologies similar to those of previously identified Galactic nebulae. Calibrated mapping of these structures and profiles in all four of the IRAC bands (3.6, 4.5, 5.8 and  8.0 μm  ) suggests that many (if not all) of the nebulae possess at least two primary structures: an interior high surface brightness shell, corresponding to what is probably the primary ionized zone, and a much weaker halo extending to very much greater distances from the nucleus. These latter regimes are particularly evident at longer MIR wavelengths (5.8 and  8.0 μm  ), and it is probable that they trace the nebular photodissociative regimes, where emission derives from small-grain continua and/or polycyclic aromatic hydrocarbon molecular bands. This latter behaviour has also been noted in previous analyses of Galactic PNe.  相似文献   

4.
We present mid-infrared (MIR) photometry for 367 Galactic disc, bulge and Large Magellanic Cloud (LMC) planetary nebulae (PNe), determined using data acquired with the Spitzer Space Telescope , and through the Legacy Programs GLIMPSE II (Galactic Legacy Infrared Mid-plane Survey Extraordinaire II) and SAGE (Surveying the Agents of the Galaxy's Evolution). This has permitted us to make a comparison between the luminosity functions of bulge and LMC PNe, and between the MIR colours of all three categories of source. It is determined that whilst the  3.6 μm  luminosity functions of the LMC and bulge sources are likely to be closely similar, the [3.6]–[5.8] and [5.8]–[8-0] indices of LMC nebulae are different from those of their disc and bulge counterparts. This may arise because of enhanced  6.2 μm  polycyclic aromatic hydrocarbon emission within the LMC sources, and/or as a result of further, and more radical differences between the spectra of LMC and Galactic PNe. We also determine that the more evolved disc sources listed in the Macquarie/AAO/Strasbourg (MASH) catalogues of Parker et al. and Miszalski et al. have similar colours to those of the less evolved (and higher surface brightness) sources in the catalogue of Acker et al., a result which appears at variance with previous studies of these sources.  相似文献   

5.
An analysis is undertaken of the relation between dust/gas mass ratios and elemental abundances within planetary nebulae (PNe). It is found that M DUST/ M GAS is broadly invariant with abundance, and similar to the values observed in asymptotic giant branch (AGB)-type stars. However, it is noted that the masses of dust observed in low-abundance PNe are similar to the masses of heavy elements observed in the gas phase. This is taken to imply that levels of elemental depletion must be particularly severe, and extend to many more species than have been identified so far. In particular, given that levels of C and O depletion are likely to be large, then this probably implies that species such as Fe, S, Si and Mg are depleted as well. There is already evidence for depletion of Fe, Si and Mg in individual PNe. It follows that whilst quoted abundances may accurately reflect gas-phase conditions, they are likely to be at variance with intrinsic abundances in low Z N nebulae.
Finally, we note that there appears to be a variation in dust/gas mass ratios with galactocentric distance, with gradient similar to that observed for several elemental abundances. This may represent direct evidence for a correlation between dust/gas mass ratios and nebular abundances.  相似文献   

6.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

7.
The He, C, N, and O abundances in more than 120 planetary nebulae (PNe) of our Galaxy and the Magellanic Clouds have been redetermined by analyzing new PNe observations. The characteristics of PNe obtained by modeling their spectra have been used to compile a new catalog of parameters for Galactic and extragalactic PNe, which is accessible at http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. The errors in the parameters of PNe and their elemental abundances related to inaccuracies in the observational data have been analyzed. The He abundance is determined with an accuracy of 0.06 dex, while the errors in the C, N, and O abundances are 0.1–0.2 dex. Taking into account the inaccuracies in the corrections for the ionization stages of the elements whose lines are absent in the PNe spectra increases the errors in the He abundance to 0.1 dex and in the C, N, and O abundances to 0.2–0.3 dex. The elemental abundances in PNe of various Galactic subsystems and the Magellanic Clouds have been analyzed. This analysis suggests that the Galactic bulge objects are similar to type II PNe in Peimbert’s classification, whose progenitor stars belong to the thin-disk population with ages of at least 4–6 Gyr. A similarity between the elemental abundances in PNe of the Magellanic Clouds and the Galactic halo has been established.  相似文献   

8.
We obtained optical long-slit spectra of four planetary nebulae (PNe) with low-ionization pair of knots, namely He 1-1, IC 2149, KjPn 8 and NGC 7662.
These data allow us to derive the physical parameters and excitation of the pairs of knots, and those of higher ionization inner components of the nebulae, separately.
Our results are as follows. (1) The electron temperatures of the knots are within the range 9500–14 500 K, similar to the temperatures of the higher ionization rims/shells. (2) Typical knots' densities are 500–2000 cm−3. (3) Empirical densities of the inner rims/shells are higher than those of the pairs of knots, by up to a factor of 10. Theoretical predictions, at variance with the empirical results, suggest that knots should be denser than the inner regions, by at least a factor of 10. (4) Empirical and theoretical density contrasts can be reconciled if we assume that at least 90 per cent of the knots' gas is neutral (likely composed of dust and molecules). (5) By using the new Raga et al. shock modelling and diagnostic diagrams appropriated for spatially resolved PNe, we suggest that high-velocity shocked knots travelling in the photoionized outer regions of PNe can explain the emission of the pairs of knots analysed in this paper.  相似文献   

9.
Submillimetre mapping observations of the active edge-on spiral galaxy NGC 3079 are presented. These maps at 850 and 450 μm were made with the Submillimetre Common User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT).
The source structure at these wavelengths consists of a central unresolved source embedded in diffuse disc emission, similar to that displayed at 1.2 mm. The disc emission is fitted with two optically thin, isothermal dust models which give temperatures of 12 and 31 K, similar to those derived previously by Braine et al. The core component is well described by a single-temperature fit (∼32 K). The combined dust mass from these observations, using the same mass absorption coefficient as Devereux & Young (1990) is 3.5×108 M, of which ∼90 per cent resides in the cold component of the galactic disc. The effect of the cold dust component detected by SCUBA is thus to reduce the global gas-to-dust mass ratio from ∼1400 found in the above study to 85, very similar to the Galactic level. Calculations using the models of Draine & Lee and/or alternative molecular gas mass estimates yield gas-to-dust mass ratios in the range 60–190.
The data presented here, together with previously published 1.2-mm mapping observations and IRAS data, are inconsistent with detections made with the Infrared Space Observatory ( ISO ). In particular, the latter give an excess of flux at 200 and 180 μm relative to that predicted by our simple model fits (approximately a factor of 2–3).  相似文献   

10.
We present the Macquarie/AAO/Strasbourg Hα Planetary Nebula Catalogue (MASH) of over 900 true, likely and possible new Galactic planetary nebulae (PNe) discovered from the AAO/UKST Hα survey of the southern Galactic plane. The combination of depth, resolution, uniformity and areal coverage of the Hα survey has opened up a hitherto unexplored region of parameter space permitting the detection of this significant new PN sample. Away from the Galactic bulge the new PNe are typically more evolved, of larger angular extent, of lower surface brightness and more obscured (i.e. extinguished) than those in most previous surveys. We have also doubled the number of PNe in the Galactic bulge itself and although most are compact, we have also found more evolved examples. The MASH catalogue represents the culmination of a seven-year programme of identification and confirmatory spectroscopy. A key strength is that the entire sample has been derived from the same, uniform observational data. The 60 per cent increase in known Galactic PNe represents the largest ever incremental sample of such discoveries and will have a significant impact on many aspects of PN research. This is especially important for studies at the faint end of the PN luminosity function which was previously poorly represented.  相似文献   

11.
We present a multiwavlength infrared (IR) study of the nearby, edge-on, spiral galaxy NGC 891. We have examined 20 independent, spatially resolved IR images of this galaxy, 14 of which are newly reduced and/or previously unpublished images. These images span a wavelength regime from  λ 1.2 μ  m in which the emission is dominated by cool stars, through the mid-IR, in which emission is dominated by polycyclic aromatic hydrocarbons (PAHs), to λ 850 μm, in which emission is dominated by cold dust in thermal equilibrium with the radiation field. The changing morphology of the galaxy with wavelength illustrates the changing dominant components. We detect extraplanar dust emission in this galaxy, consistent with previously published results, but now show that PAH emission is also in the halo, to a vertical distance of   z ≥ 2.5 kpc  . We compare the vertical extents of various components and find that the PAHs (from λ 7.7 and 8 μm data) and warm dust (λ 24 μm) extend to smaller z heights than the cool dust (λ 450 μm). For six locations in the galaxy for which the signal-to-noise ratio was sufficient, we present spectral energy distributions (SEDs) of the IR emission, including two in the halo – the first time a halo SED in an external galaxy has been presented. We have modelled these SEDs and find that the PAH fraction, f PAH, is similar to Galactic values (within a factor of 2), with the lowest value at the galaxy's centre, consistent with independent results of other galaxies. In the halo environment, the fraction of dust exposed to a colder radiation field, f cold, is of the order of unity, consistent with an environment in which there is no star formation. The source of excitation is likely from photons escaping from the disc.  相似文献   

12.
We calculate the X-ray emission from the shocked fast wind blown by the central stars of planetary nebulae (PNe) and compare with observations. Using spherically symmetric self-similar solutions, we calculate the flow structure and X-ray temperature for a fast wind slamming into a previously ejected slow wind. We find that the observed X-ray emission of six PNe can be accounted for by shocked wind segments that were expelled during the early-PN phase, if the fast wind speed is moderate,   v 2∼ 400–600 km s−1  , and the mass-loss rate is a few times  10−7 M yr−1  . We find, as proposed previously, that the morphology of the X-ray emission is in the form of a narrow ring inner to the optical bright part of the nebula. The bipolar X-ray morphology of several observed PNe, which indicates an important role of jets, rather than a spherical fast wind, cannot be explained by the flow studied here.  相似文献   

13.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

14.
Certain hydrodynamic models of planetary nebulae (PNe) suggest that their shells possess appreciable radial density gradients. However, the observational evidence for such gradients is far from clear. On the one hand, Taylor et al. claim to find evidence for radio spectral indices  0.6 < α < 1.8  , a trend which is taken to imply a variation   n e∝ r −2  in most of their sample of PNe. On the other hand, Siódmiak & Tylenda find no evidence for any such variations in density; shell inhomogeneities, where they occur, are primarily attributable to 'blobs or condensations'.
It will be suggested that both of these analyses are unreliable, and should be treated with a considerable degree of caution. A new analysis within the  log( F (5 GHz)/ F (1.4 GHz))–log( T B(5 GHz))  plane will be used to show that at least 10–20 per cent of PNe are associated with strong density gradients. We shall also show that the ratio   F (5 GHz)/ F (1.4 GHz)  varies with nebular radius; an evolution that can be interpreted in terms of varying shell masses, and declining electron densities.  相似文献   

15.
We present an analysis of the thin layer of Galactic warm ionized gas at an angular resolution ∼10 arcmin. This is carried out using radio continuum data at 1.4, 2.7 and 5 GHz in the coordinate region     . For this purpose, we evaluate the zero level of the 2.7- and 5-GHz surveys using auxiliary data at 2.3 GHz and 408 MHz. The derived zero-level corrections are   T zero(2.7 GHz) = 0.15 ± 0.06 K  and   T zero(5 GHz) = 0.1 ± 0.05 K  . We separate the thermal (free–free) and non-thermal (synchrotron) component by means of a spectral analysis performed adopting an antenna temperature spectral index −2.1 for the free–free emission, a realistic spatial distribution of indices for the synchrotron radiation and by fitting, pixel-by-pixel, the Galactic spectral index. We find that at 5 GHz, for  | b | = 0°  , the fraction of thermal emission reaches a maximum value of 82 per cent, while at 1.4 GHz, the corresponding value is 68 per cent. In addition, for the thermal emission, the analysis indicates a dominant contribution of the diffuse component relative to the source component associated with discrete H  ii regions.  相似文献   

16.
We have used 2 Micron All Sky Survey (2MASS) mapping results to investigate the distribution of hot dust continua in 12 planetary nebulae (PNe). The nature of this emission is unclear, but it is possible that where the continuum is extended, as is the case for M 1-12 and NGC 40, then the grains concerned may be very small indeed. The absorption of individual photons by such grains may lead to sharp spikes in temperature, as has previously discussed for several other such outflows. Other sources (such as MaC 1-4, He 2-25, B1 2-1 and K 3-15) appear to be relatively compact, and the high temperatures observed are understandable in terms of more normal heating processes. It is possible that the grains in these cases are experiencing high radiant flux levels.
Finally, it is noted that whilst the core of M 2-2 appears to show hot grain emission, this is less the case for its more extended envelope. The situation may, in this case, be similar to that of NGC 2346, in which much of the emission is located within an unresolved nucleus. Similarly, it is noted that in addition to hot dust and gas thermal continua, the emission in the interior of NGC 40 may be enhanced through rotational–vibrational transitions of H2, and/or the 2p3P0–2s3S transition of He  i .  相似文献   

17.
We present high signal-to-noise ratio spectrophotometric observations of seven luminous H  ii galaxies. The observations have been made with the use of a double-arm spectrograph which provides spectra with a wide wavelength coverage, from 3400 to 10 400 Å free of second-order effects, of exactly the same region as that of a given galaxy. These observations are analysed applying a methodology designed to obtain accurate elemental abundances of oxygen, sulphur, nitrogen, neon, argon and iron in the ionized gas. Four electron temperatures and one electron density are derived from the observed forbidden line ratios using the five-level atom approximation. For our best objects, errors of 1 per cent in t e([O  iii ]), 3 per cent in t e([O  ii ]) and 5 per cent in t e([S  iii ]) are achieved with a resulting accuracy of 7 per cent in total oxygen abundances, O/H.
The ionization structure of the nebulae can be mapped by the theoretical oxygen and sulphur ionic ratios, on the one side, and the corresponding observed emission line ratios, on the other – the η and η' plots. The combination of both is shown to provide a means to test photoionization model sequences presently applied to derive elemental abundances in H  ii galaxies.  相似文献   

18.
The silicate carbon star V778 Cyg is a source of 22-GHz water maser emission which was recently resolved by MERLIN. Observations revealed an elongated     -like structure along which the velocities of the maser features show a linear dependence on the impact parameter. This is consistent with a doubly warped   m = 2  disc observed edge-on. Water masers and silicate dust emission (detected by the Infrared Astronomical Satellite and Infrared Space Observatory ) have a common origin in O-rich material and are likely to be co-located in the disc. We propose a detailed self-consistent model of a masing gas–dust disc around a companion to the carbon star in a binary system, which allows us to estimate the companion mass of  1.7 ± 0.1 M  , the disc radius of  40 ± 3  au and the distance between companions of ∼80 au. Using a dust–gas coupling model for water masing, we calculate the maser power self-consistently, accounting for both the gas and the dust energy balances. Comparing the simulation results with the observational data, we deduce the main physical parameters of the masing disc, such as the gas and dust temperatures and their densities. We also present an analysis of the stability of the disc.  相似文献   

19.
We present echelle spectroscopy in the 3500- to 7060-... range for two positions of the Orion nebula. The data were obtained using the 2.1-m telescope at Observatorio Astronómico Nacional in San Pedro Mártir, Baja California. We have measured the intensities of about 220 emission lines, in particular 81 permitted lines of C+, N+, N++, O0, O+, Ne0, Si+, Si++ and S+, some of them produced by recombination only and others mainly by fluorescence. We have determined electron temperatures, electron densities and ionic abundances using different continuum and line intensity ratios. We derived the He, C and O abundances from recombination lines and find that the C/H and O/H values are very similar to those derived from B stars of the Orion association, and that these nebular values are independent of the temperature structure. We have also derived abundances from collisionally excited lines. These abundances depend on the temperature structure; accurate t 2 values have been derived comparing the O II recombination lines with the [O III ] collisionally excited lines. The gaseous abundances of Mg, Si and Fe show significant depletions, implying that a substantial fraction of these atoms is tied up in dust grains. The derived depletions are similar to those found in warm clouds of the Galactic disc, but are not as large as those found in cold clouds. A comparison of the solar and Orion chemical abundances is made.  相似文献   

20.
High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2–3 times higher than those derived from CELs – in H II regions – for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star‐forming dwarf and spiral galaxies at different redshifts. Additionally, high‐resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s‐elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E‐ELT will be of paramount interest to: (a) extend the studies of heavyelement recombination lines to low metallicity objects, (b) to extend abundance determinations of s‐elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号