首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
田动会  滕珊  冯秀丽  肖晓  宋湦  冯利  姜波 《海洋学报》2017,39(3):106-114
通过黄河三角洲埕北海域表层沉积物的粒度资料、实测潮流数据以及50 a一遇的波浪要素,分析了埕北海域表层沉积物的分布类型以及粒度参数特征,并计算了表层沉积物的临界起动应力、日平均单宽输沙通量以及波流共同作用下的单宽推移质输沙率。结果表明:研究区表层沉积物主要是粉砂质砂、砂质粉砂、粉砂和泥四种,分选中等偏差,近对称到正偏,中等尖锐到尖锐峰态;对大潮期间埕北海域潮流底应力和表层沉积物的临界起动应力的计算说明潮流在大部分区域具有起动和输运泥沙的作用;秋季潮流作用下的日平均单宽输沙通量均值为372.32 kg/(m·d),方向为涨潮流向。利用贝克尔(Bijker)和经典的Van Rijn公式计算出的50 a一遇的波流共同作用下单宽推移质日平均净输沙率结果近似相等。  相似文献   

2.
A horizontal two- dimensional numerical model is developed for estimation of sediment transport and sea bed change around a large circular cylinder under wave action. The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by a finite element method. The results of this model are compared with those from other methods and agree well with experimental data.  相似文献   

3.
邱辉  赵巧华  朱伟军 《海洋与湖沼》2013,44(6):1418-1426
本文利用高频变化的实际气象数据, 在考虑波浪作用的前提下利用FVCOM (Finite-volume Coastal Ocean Model)模式模拟了太湖底泥再悬浮的情况。模拟结果表明, FVCOM模式在考虑波浪作用下对太湖悬浮物浓度的模拟结果与卫星反演结果吻合较好。在模拟时刻, 湖心区和西南湖区是悬浮物浓度的大值区, 其原因在于: 湖心区虽然底泥较少, 但其流场的分布总是有利于周围悬浮物向湖心区输送; 而西南湖区本身有底泥的分布, 在上升运动和流场的配合下, 一方面有悬浮物向该区域输送, 另一方面该区域有沉积物悬浮。模拟时刻切应力和悬浮物浓度的空间配置是不一致的, 说明了底部切应力并不是影响悬浮物浓度的唯一因子, 还与湖流的输移和底泥的分布有关。  相似文献   

4.
Empirical formulas have been developed to calculate the fractional bed-load and suspended-load transport rates and near-bed suspended-load concentration under non-breaking waves and currents for coastal applications. The formulas relate the bed-load transport rate to the grain shear stress, the suspended-load transport rate to the energy of the flow system, and the near-bed suspended-load concentration to the bed-load transport rate, velocity and layer thickness. Adequate methods are adopted to determine the bed shear stress due to coexisted waves and currents. The hiding and exposure mechanism in nonuniform bed material is considered through a correction factor that is related to the hiding and exposure probabilities and in turn the size composition of bed material. The developed formulas have been tested using a large database of single-sized sediment transport and several sets of multiple-sized sediment transport data collected from literature, and compared with several existing formulas. The developed formulas can provide reasonably good predictions for the test cases.  相似文献   

5.
《Marine Geology》2005,216(3):169-189
Simultaneous high frequency field measurements of water depth, flow velocity and suspended sediment concentration were made at three fixed locations across the high tide swash and inner surf zones of a dissipative beach. The dominant period of the swash motion was 30–50 s and the results are representative of infragravity swash motion. Suspended sediment concentrations, loads and transport rates in the swash zone were almost one order of magnitude greater than in the inner surf zone. The vertical velocity gradient near the bed and the resulting bed shear stress at the start of the uprush was significantly larger than that at the end of the backwash, despite similar flow velocities. This suggests that the bed friction during the uprush was approximately twice that during the backwash.The suspended sediment profile in the swash zone can be described reasonably well by an exponential shape with a mixing length scale of 0.02–0.03 m. The suspended sediment transport flux measured in the swash zone was related to the bed shear stress through the Shields parameter. If the bed shear stress is derived from the vertical velocity gradient, the proportionality coefficient between shear stress and sediment transport rate is similar for the uprush and the backwash. If the bed shear stress is estimated using the free-stream flow velocity and a constant friction factor, the proportionality factor for the uprush is approximately twice that of the backwash. It is suggested that the uprush is a more efficient transporter of sediment than the backwash, because the larger friction factor during the uprush causes larger bed shear stresses for a given free-stream velocity. This increased transport competency of the uprush is necessary for maintaining the beach, otherwise the comparable strength and greater duration of the backwash would progressively remove sediment from the beach.  相似文献   

6.
通过物理模型试验研究水流作用下轴线倾斜海底管道的三维局部冲刷问题。利用超声波探头监测管道下部冲刷沿管轴线方向的扩展过程,分析海底管道三维局部冲刷的动态发展机理。由模型沙的冲蚀试验,建立沙床面剪切应力与泥沙表观侵蚀速率之间的关系式,并引入经验公式对沙床面剪切应力放大系数、泥沙表观侵蚀速率以及远场床面剪切应力之间的关系进行表达。由倾斜管道模型试验,在分析冲刷扩展位置随时间变化数据的基础上,结合上述经验公式以及沙床面剪切应力放大系数与管道埋深的关系,建立轴线倾斜海底管道冲刷扩展速率的预测公式。  相似文献   

7.
The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave?current effect, and confirm that the method of measuring bed shear stress under wave?current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave?current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.  相似文献   

8.
Research on Measurement of Bed Shear Stress Under Wave?Current Interaction   总被引:3,自引:1,他引:2  
The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave?current effect, and confirm that the method of measuring bed shear stress under wave?current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave?current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.  相似文献   

9.
Nikuradse roughness (ks) is very important in the sediment transport prediction because it is related to the evaluations of the velocity distribution, shear stress and erosion depth. Dimensionless Nikuradse roughness (ks/D, where D is the sediment diameter) is usually given 1–2.5 on the immobile plan bed or at low shear stress. But it behaves differently on the mobile plan bed at high shear stress with much sediment picked up to movement when the Shields parameter (Θ) is larger than 0.8–1.0. The effective Nikuradse roughness on the mobile plan bed was derived indirectly from the erosion depth correlated to the mobile plan bed thickness considering the mass conservation in the present study. The proposed erosion depth confirmed the relation to the Shields parameters with an extra factor consisting of suspended sediment and its damping to turbulence. The decrement of the erosion depth caused by the increment of the sediment diameter at large shear stress was obtained, which was usually absent in classical empirical formulas based on the bedload theory. Good agreement with experiments was achieved by the present prediction of the Nikuradse roughness, erosion depth and sediment transport rate. Discussion was mainly focused on the prediction improvement caused by considering the impact of suspended sediment and its damping to turbulence.  相似文献   

10.
长江河口波-流共同作用下的全沙数值模拟   总被引:15,自引:1,他引:15  
针对长江河口地形、水文、泥沙运动等复杂的特点,建立了波-流共同作用下的二维全沙及河床演变模型.在合理计算研究区域流场等的基础上,利用切应力概念确定悬沙扩散方程中的源函数;通过系列数值试验和实测资料的统计分析,在经典的泥沙临界起动速度中引入反映河床底质结构及固结程度的局地系数;选用由流速、盐度、含沙量浓度确定的泥沙颗粒絮凝沉降速度,从而提高长江口悬沙场数值模拟精度.在底沙输运计算中,提出一种较为合理确定有关参数的方法.通过洪、枯季大、中、小潮水文、泥沙资料和典型台风引起航槽冲淤变化的实测资料验证,表明该文提出的模型能较合理地反映长江河口流场、泥沙场及地形的演变.  相似文献   

11.
A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, ac expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline kω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found.  相似文献   

12.
悬沙浓度是淤泥质海岸重要的环境指标。为探讨潮滩悬沙浓度和悬沙输运对风暴事件的响应过程及其动力机制,于2014年9月"凤凰"台风过境前、中、后在长江三角洲南汇潮滩进行了现场观测,获得同步高分辨率的水深、波高、近底流速和浊度剖面时间序列(9个潮周期)。结果表明,风暴中平均和最大波高、波-流联合底床剪切应力、悬沙浓度和悬沙输运率可比平静天气高数倍;风暴期间高潮位低流速阶段悬沙沉降导致近底发育数十厘米厚的浮泥层(悬沙浓度大于10 g/L)。研究认为风暴事件中淤泥质海岸悬沙浓度和悬沙输运的剧烈变化其根本动力机制是风暴把巨大能量传递给近岸水体,进而显著增大波-流联合底床剪切应力,导致细颗粒泥沙再悬浮。  相似文献   

13.
在河口海岸工程中,常常会面临岸滩冲蚀、岸线演变、航道淤积、建筑物底部淘刷等涉及泥沙起动和输运的问题,而水流对底床的剪切力是研究泥沙起动与输运的重要参数。本文利用自行设计的底床剪切力测量装置,在不同流速的水流中,分别在固定砂床(定床)和可移动砂床(动床)上进行了底部剪切力的直接测量;同时,根据试验中声学多普勒流速仪(ADV)测得的流速信息,采用湍流动能法对底床剪切力进行了估算。结果显示:当比例系数取值0.19时,估算出的底床剪切力与测量值吻合较好。对测量结果进行分析后发现,流速较小、砂粒未起动时,动、定砂床上的底部剪切力大致相同;在有砂粒起动的情况下,动床上的底部剪切力比定床上的大,相对差值最大约20%。因此当涉及底床剪切力的问题时,需要先确认床面形式,然后再进行分析研究。  相似文献   

14.
近岸海域水沙界面通量与水流挟沙力研究   总被引:1,自引:0,他引:1  
郑俊  李瑞杰  于永海 《海洋学报》2014,36(5):136-141
近岸海域的波浪、潮流及海流等动力因素具有周期性和时间、空间尺度差异大的特点,在综合考虑各动力因子的联合作用时具有较大的难度。本文根据平动动能叠加原理给出了一种近岸动力因子的表达形式,并提出了海洋波动有效速度的概念,结合水沙界面处泥沙通量的切应力与挟沙力关系,得到了水流挟沙力的新的计算公式。指出了水流挟沙力与水流临界速度有关,并且该水流临界速度随水深的增大及相对糙率的减小而增大。采用近岸实测数据和模拟结果,对本文的近岸水流挟沙力公式进行了验证,结果表明该公式的计算值与实测值吻合较好,可以适用于近岸海域。  相似文献   

15.
波浪对泥沙作用的数值研究及在渤海区域的检验   总被引:1,自引:1,他引:0  
滕涌  杨永增  芦静  崔廷伟 《海洋学报》2012,34(5):174-182
针对渤海海域开展了波致底切应力对泥沙作用的数值估计。针对浅水条件,通过理想试验估算了波致底切应力对波流耦合底切应力的贡献。针对渤海大风过程,利用ECOMSED模式,通过波流耦合底边界层模型模拟了渤海区域的泥沙浓度,并利用遥感资料对表层泥沙浓度的数值模拟进行了检验。对比结果表明,考虑波浪作用的情况下,模拟结果在总体分布上得到明显的改善。在大风过程中波浪对0~20 m近岸区域的泥沙再悬浮起主导作用。  相似文献   

16.
Over the past decades, many attempts have been made to generate useful bottom erosion models for the study of cohesive sediment movement. This study addresses some of the key questions involved in determining the functional relationship between erosion rate and bottom shear stress. Current, wave, and turbidity data were collected from a bottom mounted instrument array in a moderately energetic estuarine environment. The bottom shear stress was calculated from a wave–current interaction model. The erosion rate was derived from the observed sediment concentration using a vertical mixing model. Examination of the relationship between erosion rate and bottom stress showed that the erosion rate varied at intertidal frequency. When averaged over the tidal fluctuation, the erosion rate remained approximately constant at low stress, but increased sharply when the shear stress rose above a critical value. This suggests two-stage erosion. The bed has a layered structure, in which a thin layer of loose, high water content material overlies a more consolidated bed. The top layer of high water content material (fluff) was easily disturbed and re-suspended by tidal currents, but the consolidated bottom layer was eroded only under conditions of high shear stress.  相似文献   

17.
渤海海峡沉积物输运的参数化计算   总被引:1,自引:1,他引:0  
本文以2018年冬季渤海海峡两个站位的定点连续观测数据为基础,使用一维参数化方案,计算了观测站位底边界层内的水平悬浮物输运通量以及推移质输运量。在参数化方案中,简化的一维对流扩散方程被用于计算底边界层内的垂向悬浮物浓度。为了验证参数化方案的可靠性,本文基于观测数据对比了两种底剪切应力计算模型、四种临界起动剪切应力计算方法和两种一维对流扩散方程解法。对比结果表明:(1)不同模型计算的底剪切应力结果相近;(2)临界起动剪切应力受到颗粒间黏性作用的影响;(3)一维对流扩散方程的求解过程需要考虑沉积物浓度的分层效应和不同粒级颗粒临界起动剪切应力的差异。基于上述对比结果确定的最优参数化方案,进一步计算了观测站位的沉积物输运量:(1)在有再悬浮的时段,距底5 m内的水平悬浮物通量占全水深悬浮物通量的比例(T01站约为21%,T02站约为17%)显著高于相同层位水通量的占比;(2)依据参数化方案估算的冬季平均的悬浮物通量比忽略底边界层悬浮物浓度垂向变化的传统方法结果高约16%;(3)推移质输运量比悬移质输运量约低两个数量级。  相似文献   

18.
天津南港工业区位于渤海湾典型的淤泥质海岸,其港区为环抱式有掩护的平面布局,规划建设10万吨级航道。为准确预测港池航道的泥沙回淤状况,采用双向嵌套网格建立波浪潮流共同作用下的泥沙运动数学模型,考虑波浪辐射应力作用,以及波浪引起的紊动和波浪增强海床底部切应力对悬沙输移的影响。模型选取现场实测大潮作为代表潮,以工程海域附近测波资料的能量加权平均结果作为代表波,对邻近的天津港15万吨级航道年均回淤进行了验证,确定数学模型中相关泥沙运动与底床冲淤的计算参数。在此基础上,数学模型预测了南港工业区规划的港池航道总的年均回淤量,与天津港主航道资料类比,计算的南港工业区港区10万吨级航道泥沙回淤分布与淤积总量是合理的。  相似文献   

19.
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.  相似文献   

20.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号