首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Phase relations on the diopside-jadeite join were experimentally determined at 16–22 GPa pressures and temperatures in the vicinity of 1500 °C under hydrous and 2100 °C under anhydrous conditions, using a split-sphere anvil apparatus (USSA-2000). Starting compositions on the diopside-jadeite join produced assemblages containing CaSiO3 perovskite. This assured that the coexisting garnet with compositions in the ternary system Mg2Si2O6(En)-CaMgSi2O6(Di)-NaAlSi2 O6(Jd) had the maximum Ca content possible under the given conditions. Garnet reached its maximum Ca content at 17 GPa, and exsolved CaSiO3 perovskite at higher pressures. The garnet composition closest to the join, En5Di47.5Jd47.5 (mol%), was reached at 18–19 GPa and 2100 °C. The maximum Na content of garnet limited by the coexisting pyroxene did not exceed 51 mol% jadeite at 22 GPa and 2100 °C. At 22 GPa, pyroxene was replaced with NaAlSiO4 (calcium ferrite structure) and stishovite under anhydrous conditions, while in the presence of H2O a new hydrous Na-bearing phase with the ideal composition Na7(Ca, Mg)3AlSi5O9(OH)18 was synthesized instead. Garnet coexisting with CaSiO3 perovskite and MgSiO3 ilmenite at 22 GPa and 1400 °C was En51Di9Jd40, coincidentally identical to the first garnet forming in the ternary system at 13 GPa. The new data are applicable to the Earth's transition zone (400–670 km depths) and suggest that the transformation from eclogite to garnetite would occur primarily over a limited depth interval from 400 to 500 km. Gaps in the observed garnet compositions suggest immiscibility, which could potentially cause a sharp 400 km discontinuity in an eclogitic mantle.  相似文献   

2.
Transformation of enstatite — diopside — jadeite pyroxenes to garnet   总被引:1,自引:1,他引:1  
The high-pressure stability of enstatite(En)-diopside(Di)-jadeite(Jd) pyroxenes has been investigated experimentally with a split-sphere anvil apparatus (USSA-2000). On the enstatite-pyrope join, the compositions of garnet coexisting with enstatite were determined at 100–165 kbar and 1450–1850° C. The results indicate complete solubility between enstatite and pyrope. In the system CaO-MgO-Al2O3-SiO2 (CMAS), the compositions of coexisting pyroxenes and garnet were determined at 100–165 kbar and 1250–1750° C. At 157 kbar, 1650° C, garnet with the composition En79Di21 (mol%) forms on the En-Di join. In the system Na2O-MgO-Al2O3-SiO2 (NMAS), the compositions of coexisting pyroxenes and garnet were determined at 60–160 kbar and 1200–1850° C. On the En-Jd join, the first garnet has the composition En48Jd52 at 135 kbar, 1650° C, and En53Jd47 at 140 kbar, 1500° C. On the Di-Jd join, the first garnet with the composition Di63Jd37 forms around 170 kbar, 1650° C. In the En-Di-Jd system, the first appearance of garnet with the composition En42Di9Jd49 is estimated at 133 kbar, 1650° C. The new pyroxene with the composition NaMg0.5Si2.5O6 (NaPx) transforms to garnet at 154 kbar, 1650° C. The experimental results indicate that the transformation of a twopyroxene assemblage to garnet and residual pyroxene in the En-Di-Jd system could occur at pressures consistent with the 400 km seismic discontinuity and in a pressure interval of 0–3 kbar.  相似文献   

3.
Current methods of geothermometry and geobarometry applicable to garnet lherzolite are reviewed with reference to recent experimental studies of the equilibration of natural garnet lherzolite and it is concluded that the Wells and Mori-Green formulations of the two pyroxene solvus provide the most reasonable temperature estimates. Pressures are best estimated by using these temperatures with Wood's formulation of the orthopyroxene-garnet geobarometer without chromium corrections. Pipe 200 garnet lherzolites are considered to have equilibrated at 907°–950° C at 30.0–34.5 kb.It is shown that the transport times of xenoliths from the mantle are sufficiently long (0.5–24 h) to allow thermal equilibration with kimberlite but are too short to allow chemical re-equilibration to occur. Xenolith suites therefore retain information regarding the pressure/temperature history of the upper mantle despite being heated to the temperature of the kimberlite magma during transport.The Pipe 200 xenolith suite indicates that the upper mantle beneath Lesotho has been perturbed to temperatures slightly above those defined by steady state geotherms. The Pipe 200 suite is derived from a narrow depth range (90–110 km) and derivation of chromite and garnet lherzolites from similar depths implies that the mantle is heterogeneous over short vertical distances. No simple stratigraphy, in which chromite lherzolites overlie garnet lherzolites is evident. Comparison with other suites of Lesotho garnet lherzolites shows that it is not possible to construct an upper mantle stratigraphy except in the most general terms because of the prevailing lateral and vertical heterogeneity and apparent limited depth range represented by the xenolith suites.  相似文献   

4.
Crystal fragments of pyrope from diatremes of ultramafic microbreccia in the Navajo Province of the Colorado Plateau contain inclusions of olivine, pyroxene, spinel, chlorite, amphibole, chlorapatite, and dolomite. The included suite supports earlier hypotheses that hydrous phases and carbonates were primary parts of some garnet peridotite assemblages in the Plateau lithosphere. Garnets with spinel and orthopyroxene inclusions likely all were sampled at pressures less than 36 kb and perhaps as low as 15–20 kb; no evidence was found for inclusions from greater depths. Temperature estimates are 800°–900° C for garnet-clinopyroxene equilibration, but only 500°–700° C for garnetolivine equilibration. Inherent differences between geothermometry methods account for only part of the discrepancy. Pronounced Fe-Mg zoning in garnet at olivine contacts and the lack of such zoning at clinopyroxene contacts are evidence that the difference in part relates to relative reequilibration rates with cooling. The garnet-olivine temperature estimates may be the best approximations to mantle temperatures before eruption. Our data are compatible both with the hypothesis that the garnet peridotite was emplaced in the mantle by large-scale, horizontal transport in the lithosphere and with the hypothesis that rocks were sampled from Precambrian lithosphere cooled to temperatures like those along a low heat flow geotherm. Discordances between the geothermometers here and in other lherzolite localities may be keys to evaluating tectonic histories of lherzolite masses.  相似文献   

5.
The stability and partial melting of synthetic pargasite in the presence of enstatitic orthopyroxene (opx), forsterite, diopsidic clinopyroxene (cpx), plagioclase (An50), and water has been studied in the range of 0.4–6.0 kb and 750–1000°C in the system Na2O-CaO-MgO-Al2O3-SiO2-H2O with a fixed bulk composition of pargasite+5 opx. The addition of orthopyroxene effectively reduces the stability field of pargasite by approximately 200°C at 1 kb. The invariant point involving pargasite coexisting with water-saturated liquid and anhydrous phase shifts from about 0.85 kb and 1025°C to 2.5±0.5 kb and 925±25°C with the addition of opx. Based on the solidus mineral assemblage and direct chemical analysis of quenched glass, the vapor-saturated liquid has a composition close to that of intermediate plagioclase. A layered silicate, interpreted to be Na-phlogopite, has an upper-thermal stability that nearly equals that of pargasite in the field of partial melting and coexists with liquid, pargasite, cpx, and forsterite at 6 kb, 1000°C. These results support the hypothesis that mantle metasomatism could involve formation of pargasitic amphibole from a silicate melt at depths as shallow as 8–10 km.  相似文献   

6.
Clinochlore, which is, within the limits of error, the thermally most stable member of the Mg-chlorites, breaks down at = P tot to the assemblage enstatite+forsterite+spinel+H2O along a univariant curve located at 11 kb, 838 ° C; 15kb, 862 ° C; and 18 kb, 880 ° C (±1 kb ±10 ° C). At water pressures above that of an invariant point at 20.3 kb and 894 ° C involving the phases clinochlore, enstatite, forsterite, spinel, pyrope, and hydrous vapor, clinochlore disintegrates to pyrope+forsterite+spinel+H2O. The resulting univariant curve has a steep, negative dP/dT slope of –930 bar/ °C at least up to 35 kb.Thus, given the proper chemical environment, Mg-chlorites have the potential of appearing as stable phases within the earth's upper mantle to maximum depths between about 60 and 100 km depending on the prevailing undisturbed geotherm, and to still greater depths in subduction zones. However, unequivocal criteria for mantle derived Mg-chlorites are difficult to find in ultrabasic rocks.  相似文献   

7.
A suite of crustal xenoliths from Tertiary basaltic tuffs of the Northern Hessian Depression (NHD) volcanic field comprises abundant meta-igneous pyroxene granulites of mafic, noritic to anorthositic, IAT and tonalitic composition. Less abundant are granitic, tonalitic and leucogranitic gneisses and metasedimentary xenoliths. A total of 49 samples were analyzed for modal compositions, for major and trace elements (including Li, Rb, Sr, Ba, Cs, V, Sc, Cr, Co, Ni, Y, Zr, Nb, Ta, Hf, Th and REE) and oxygen isotopes. Two-pyroxene thermometry yields temperatures between 700 and 900° C for mafic and noritic granulites. Feldspar thermometry indicates temperatures of 660°–710° C for tonalitic granulites and 470°–520° C for granitic and tonalitic gneisses. One highly depleted sillimanite-rich metasediment contains cordierite and garnet which have equilibrated at temperatures of 780° C. The general lack of garnet in the mafic and noritic granulites and the presence of sillimanite in felsic xenoliths indicates that metamorphic pressures have not exceeded 10 kb. Major and trace element data and oxygen isotope compositions of the mafic granulites are compatible with an origin from spilitized enriched-type MORB rocks (enrichment in 18O to 11 and in Li to 34 ppm at average SiO2 contents of 44.1 wt%). These low-T spilites were transformed into amphibolites and then pyroxene granulites during subsequent high temperature metamorphic events. Low Si, Al, K, and Rb concentrations along with An contents in plagioclase ranging from near 50 to 98 mole percent suggest that amphibolite facies protoliths have generated tonalitic melts during partial melting at temperatures above 700° C. The mafic granulite xenoliths are interpreted as restites whereas the tonalitic samples probably represent the extracted partial melts derived by 20 to 30 percent degree of melting. Metasedimentary xenoliths strongly depleted in granitic component could represent restites from which granitic S-type partial melts have been extracted. Tonalitic and leucogranitic gneisses including one trondhjemite xenolith have many chemical characteristics (e.g. REE distribution) in common with tonalite-trondhjemite-granodiorite suites of the North Atlantic region but cannot be accounted for a more specific origin. Estimated elastic properties of the main types of NHD xenoliths yield P-wave velocities of 6.0–6.4 km-1 for granitic, tonalitic and trondhjemite gneisses including tonalitic granulites and 6.5–7.0 for the more mafic xenoliths. When compared with two seismic depths-Vp profiles these data are in accordance with a model where the mafic, andesitic, noritic and tonalitic granulites comprise abundant rock types at depths between 29 km (Moho) and 20 km which mainly consists of old oceanic crust including subduction related volcanic products. The more felsic xenoliths probably represent material from depths between 12 and 20 km.  相似文献   

8.
Partitioning of elements between majorite garnet and ultrabasic melt has been studied at 16 GPa and 1950° C. Ca, Ti, La, Sm, Gd, Zr, Hf, Fe, Ni, Mn, K, and Na are enriched in the melt, whereas Al, Cr, V, Sc and Yb are concentrated in majorite garnet. Thus, majorite garnet fractionation by partial melting could produce chemical heterogeneities in these elements deviating from chondritic abundance. Using the partitioning behaviour of elements between majorite garnet and ultrabasic melt, the petrogenesis of komatiite is discussed. A simple model to explain the chemical varieties of komatiites is as follows. Aluminadepleted komatiite was generated by partial melting of the primitive mantle at 200–650 km depth, and alumina-enriched komatiite is the product of remelting of the residual solid at the same depths, whereas alumina-undepleted komatiite was formed by partial melting of the primitive upper mantle at depths shallower than 200 km. We suggest the possibility of large-scale chemical layering or heterogeneity in the early Archean upper mantle as an alternative model for komatiite genesis; shallower mantle depleted in majorite garnet and the underlying mantle enriched in majorite garnet. Alumina-depleted and alumina-enriched komatiites in the early Archean might be generated by a high degree of partial melting of the layered mantle. Such chemical layering could have been homogenized by the late Archean. This explains the observations that alumina-depleted and alumina-enriched komatiites were generally formed in the early Archean but alumina-undepleted komatiite was erupted in the late Archean.  相似文献   

9.
The role of phase transformations in a mantle of pyrolite composition is reviewed in the light of recent experimental data. The pyroxene component of pyrolite transforms to the garnet structure at 300–350 km whilst olivine transforms to beta-Mg2SiO4 near 400 km. Between about 500 and 550 km, beta-Mg2SiO4 probably transforms to a partially inverse spinel structure whilst the CaSiO3 component of the complex garnet solid solution exsolves and transforms to the perovskite structure. The major seismic discontinuity near 650–700 km is probably caused by disproportionation of Mg2SiO4 spinel into periclase plus stishovite. At a slightly greater depth, the remaining magnesian garnet transforms to the corundum or ilmenite structure. Finally, at a depth probably in the vicinity of 800–1000 km, the (Mg,Fe)SiO3 component of the ilmenite phase transforms to a perovskite structure whilst stishovite and some of the periclase recombine to form perovskite also. The mineral assemblage so formed is about 4% denser than mixed oxides (MgO + FeO + A12O3 + CaO + stishovite) isochemical with pyrolite. The above sequence of phase transformations in pyrolite provides a satisfactory general explanation of the elastic properties and density distribution in the mantle. In particular, there is no evidence requiring an increase of FeO/(FeO + MgO) ratio with depth.The depths at which major phase transformations occur in subducted lithosphere differ from those in ‘normal’ mantle. These differences are caused by two factors: (1) Temperatures within sinking plates are much lower than in surrounding mantle to depths of 700 km or more. (2) Irreversible chemical differentiation of pyrolite occurs at oceanic ridges. Lithosphere plates so formed consist of a layer of basaltic rocks underlain successively by layers of harzburgite, lherzolite, and pyrolite slightly depleted in highly incompatible elements (e.g. La, Ba, Rb, U). The phase-transformation behaviour of the first three of these layers differs from that of pyrolite.The effects of these and other factors connected with phase transformations on the dynamics of plate subsidence are discussed. It appears quite likely that plates penetrate the 650–700 km discontinuity, largely because the slope of the spinel disproportionation is probably positive, not negative as generally supposed. The former basaltic oceanic crust probably sinks deeply into the lower mantle, whilst the former harzburgite component of the plate may collect above the perovskite transition boundary. Phase transformations may thus serve as a kind of filter, leading to increased and irreversible mantle heterogeneity with time.The possible roles of phase transformations in causing deep-focus earthquakes and introducing water into the mantle in subduction zones are also briefly discussed.  相似文献   

10.
Experiments were conducted at 6–30 kb and 875–1200°C on two garnet pyroxenite xenoliths from the Bullenmerri and Gnotuk Maars of western Victoria, Australia. The (garnet + clinopyroxene + plagioclase + spinel) assemblage of DR9734 was stable between 10 and 12.5 kb, and 950 and 1,050°C. The compositions of its natural mineral phases were most closely approximated in experiments at 12.5 kb and 1,000–1,050°C. The (garnet + spinel + clinopyroxene + orthopyroxene + amphibole) assemblage of DR10165 was stable at pressures > 8 kb and temperatures > 950°C. However, differences between natural and experimental mineral compositions indicate that the mineral assemblage of this xenolith persisted metastably after cooling below 950°C with chemical exchange continuing down to approximately 850–900°C. When the experimental data for DR9734 and DR10165 are applied to mineralogical data for other mafic and ultramafic xenoliths from the Bullenmerri and Gnotuk Maars, they indicate that previous pressure and temperature estimates for individual xenoliths are 2–3 kb and 50°C too high. These corrections increase average temperatures for the geotherm beneath western Victoria by about 50°C over a depth range of 30–45 km and confirm its perturbed (high-temperature) character.This paper is a contribution to IGCP Project 304 (Lower Crustal Processes)  相似文献   

11.
Bowen's petrogenetic grid was based initially on a series of decarbonation reactions in the system CaO-MgO-SiO2-CO2 with starting assemblages including calcite, dolomite, magnesite and quartz, and products including enstatite, forsterite, diopside and wollastonite. We review the positions of 14 decarbonation reactions, experimentally determined or estimated, extending the grid to mantle pressures to evaluate the effect of CO2 on model mantle peridotite composed of forsterite(Fo)+orthopyroxene(Opx)+clinopyroxene(Cpx). Each reaction terminates at an invariant point involving a liquid, CO2, carbonates, and silicates. The fusion curves for the mantle mineral assemblages in the presence of excess CO2 also terminate at these invariant points. The points are connected by a series of reactions involving liquidus relationships among the carbonates and mantle silicates, at temperatures lower (1,100–1,300° C) than the silicate-CO2 melting reactions (1,400–1,600° C). Review of experimental data in the bounding ternary systems together with preliminary data for the system CaO-MgO-SiO2-CO2 permits construction of a partly schematic framework for decarbonation and melting reactions at upper mantle pressures. The key to several problems in the peridotite-CO2 subsystem is the intersection of a subsolidus carbonation reaction with a melting reaction at an invariant point near 24 kb and 1,200°C. There is an intricate series of reactions between 25 kb and 35 kb involving changes in silicate and carbonate phase fields on the CO2-saturated liquidus surfaces. Conclusions include the following: (1) Peridotite Fo+Opx+Cpx can be carbonated with increasing pressure, or decreasing temperature, to yield Fo+Opx+Cpx+Cd (Cd=calcic dolomite), Fo+Opx+Cd, Fo+Opx+Cm (Cm=calcic magnesite), and finally Qz+Cm. (2) Free CO2 cannot exist in subsolidus mantle peridotite with normal temperature distributions; it is stored as carbonate, Cd. (3) The CO2 bubbles in peridotite nodules do not represent free CO2 in mantle peridotite along normal geotherms. (4) CO2 is as effective as H2O in causing incipient melting, our preferred explanation for the low-velocity zone. (5) Fusion of peridotite with CO2 at depths shallower than 80 km produces basic magmas, becoming more SiO2-undersaturated with depth. (6) The solubility of CO2 in mantle magmas is less than about 5 wt% at depths to 80 km, increasing abruptly to about 40 wt% at 80 km and deeper. (7) Deeper than 80 km, the first liquids produced are carbonatitic, changing towards kimberlitic and eventually, at considerably higher temperatures, to basic magmas. (8) Kimberlite and carbonatite magmas rising from the asthenosphere must evolve CO2 at depths 100-80 km, which contributes to their explosive emplacement. (9) Fractional crystallization of CO2-bearing SiO2-undersaturated basic magmas at most pressures can yield residual kimberlite and carbonatite magmas.  相似文献   

12.
Ultramafic and mafic granulites from Archaean gneisses in N.W. Scotland (the Scourian) show evidence of two periods of granulite facies mineral growth. The first produced a high pressure clinopyroxene +garnet±plagioclase assemblage at an estimatedP-T of 12–15 kb and 1,000° C. Uplift of the complex caused partial breakdown of the garnet by reaction with clinopyroxene to produce orthopyroxene +plagioclase ±spinel±amphibole symplectites, at an estimatedP-T of 10–14 kb and 800°–900° C. Garnet stability is shown to depend on both whole-rock Fe/Mg ratios and onP-T conditions. The pressures imply crustal thicknesses in the Archaean of least 35–45 km.  相似文献   

13.
The water-undersaturated melting relationships of a mafic, peralkaline, potassic madupite (with about 3% H2O as shown by chemical analysis) from the Leucite Hills, Wyoming, have been studied at pressures up to 30 kb. At low pressures (<5 kb) leucite is the dominant liquidus phase, but it is replaced at higher pressures by clinopyroxene plus olivine (<5–7 kb), clinopyroxene (7–12.5 kb), clinopyroxene plus minor spinel (12.5–17.5 kb), and clinopyroxene alone (17.5–> 30 kb). At all pressures there is a reaction relationship with falling temperature between melt, olivine and probably clinopyroxene to yield phlogopite. Apatite is stable within the melting interval to pressures above 25 kb. Electron microprobe analyses demonstrate that the clinopyroxene is diopsidic, with low aluminium and titanium contents. Pressure has relatively little effect on the composition of the pyroxene. Phlogopite is also aluminium-poor and has only a moderate titanium content. The experimental results indicate that madupite is not the partial melting product of hydrous lherzolite or garnet lherzolite in the upper mantle and it seems improbable that it is derived by melting of mantle peridotite with a mixed H2O-CO2 volatile component. Madupite could, however, be the partial melting product of mica-pyroxenite or mica-olivine-pyroxenite in the upper mantle. It is pointed out that the chemistry of some potassium-rich volcanics may have been affected by volatile transfer and other such processes during eruption and that experimental studies of material affected in this way have little bearing upon the genesis of potassic magmas. Finally, the experimental results enable constraints to be placed upon the P-T conditions of the formation of richterite-bearing mica nodules found in kimberlites and associated rocks. Maximum conditions are 25 kb and 1,100 ° C.  相似文献   

14.
Sodic pyroxene (jadeite content X jd=0.1–0.3) occurs locally as small inclusions within, albite porphyroblasts and in the matrix of hematite-bearing quartz schists in the Sanbagawa (Sambagawa) metamorphic belt, central Shikoku, Japan. The sodic, pyroxene-bearing samples are characteristically free from chlorite and their typical mineral assemblage is sodic pyroxene+subcalcic (or sodic) amphibole+phengitic mica+albite+quartz+hematite+titanite±epidote. Spessartine-rich garnet occurs in Mn-rich samples. Sodic pyroxene in epidote-bearing samples tends to be poorer in acmite content (average X Acm=0.26–0.50) than that in the epidote-free samples (X Acm=0.45–0.47). X Jd shows no systematic relationship to metamorphic grade, and is different among the three sampling regions [Saruta-gawa, Asemi-gawa and Bessi (Besshi)]. The average X Jd of the Saruta-gawa samples (0.21–0.29) is higher than that of the Asemi-gawa (0.13–0.17) and Bessi (0.14–0.23). The P-T conditions of the Asemi-gawa and Bessi regions are estimated at 5.5–6.5 kbar, >360°C in the chlorite zone, 7–8.5 kbar, 440±15°C in the garnet zone and 8–9.5 kbar, 520±25°C in the albite-biotite zone. Metamorphic pressure of the Saruta-gawa region is systematically 1–1.5 kbar higher than that of the Asemi-gawa and Bessi regions, and materials of the Saruta-gawa region have been subducted to a level 3–5 km deeper than materials that underwent metamorphism at equivalent temperatures and are now exposed in the Asemi-gawa and Bessi regions. Pressure slightly increases toward the north (structurally high levels) through the Sanbagawa belt of central shikoku. Two types of zonal structure were observed in relatively coarse-grained sodic pyroxenes in the matrix. One type is characterized by increasing X Jd from core to rim, the other type by decreasing X Jd from core to rim. Both types of zoned pyroxenes show an increase in X Fe 2+[=Fe2+/(Fe2++Mg)] from core to rim. The first type of zoning was observed in a sample from the chlorite zone of lowest grade, whereas the latter occurs in the garnet and albite-biotite zones of higher grade. The contrast in zonal structure implies that dP/dT during prograde metamorphism decreased with increasing metamorphic grade and may have been negative in some samples from the higher-grade zones. The estimated dP/dT of the prograde stage of the chlorite zone is 3.2 kbar/100°C, and that of the garnet and albite-biotite zones is -1.8 to 0.9 kbar/100°C. The variation of dP/dT at shallow and deep levels of a subduction system probably reflects the difference of heating duration and/or change in thermal gradient of the subduction zone by continuous cooling of the surrounding mantle.  相似文献   

15.
The high-pressure schist terranes of New Caledonia and Sanbagawa were developed along the oceanic sides of sialic forelands by tectonic burial metamorphism. The parent rocks were chemically similar, as volcanic-sedimentary trough or trench sequences, and metamorphic temperatures in both belts were 250° to 600° C. From phase equilibria curves, total pressures were higher for New Caledonia (6–15 kb) than for Sanbagawa (5–11 kb) and the estimated thermal gradients were 7–10° C/km and 15° C/km respectively.PT paths identify the higher pressure in New Caledonia (P differences 2 kb at 300° C and 4 kb at 550° C) with consequent contrast in progressive regional metamorphic zonation for pelites in the two areas: lawsonite-epidote-omphacite (New Caledonia) and chlorite-garnet-biotite (Sanbagawa). In New Caledonia the Na-amphibole is dominantly glaucophane and Na-pyroxenes associated with quartz are Jadeite (Jd95–100) and omphacite; in Sanbagawa the amphibole is crossite or riebeckite and the pyroxene is omphacite (Jd50). For both areas, garnet rims show increase in pyrope content with advancing grade, but Sanbagawa garnets are richer in almandine. Progressive assemblages within the two belts can be equated by such reactions as:New Caledonia Sanbagawa glaucophane+paragonite+H2Oalbite+chlorite+quartz glaucophane+epidote+H2Oalbite+chlorite+actinolite and the lower pressure Japanese associations appear as retrogressive phases in the New Caledonia epidote and omphacite zones.The contrasts inPT gradient, regional zonation and mineralogy are believed due to differences in the tectonic control of metamorphic burial: for New Caledonia, rapid obduction of an upper sialic plate over an inert oceanic plate and sedimentary trough; and for Sanbagawa, slower subduction of trench sediments beneath a relatively immobile upper plate.  相似文献   

16.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

17.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   

18.
Internally consistent thermodynamic computation of equilibria in the FeO-MgO-SiO2 system up to 300 kbar is carried out and phase diagrams and profiles of the elastic properties and density are constructed at the depths of 300–800 km. Comparisons of calculated thermodynamic properties for different petrological models with seismic velocity profiles have been used to constrain the mineralogy of the mantle discontinuities. The 400-km discontinuity may represent the univariant or divariant transition in the olivine component of pyrolite as well as a chemical boundary. For the pyrolite composition at the depth of 650 km there are two different spinel + perovskite + stishovite (640 km) and magnesiowustite + spinel + perovskite (650 km) divariant loops (1–2 km wide) separated by a Invariant zone spinel + perovskite (4–6 km wide). The results indicate that phase changes in pyrolite do not explain the 650-km discontinuity. It is also shown that it is impossible to match the seismic properties observed at the depths of 600–800 km and through the discontinuity with any isochemical petrological model considered in the FMS system. However, increasing the iron content or silica and iron contents across the 650-km discontinuity can produce thermodynamic properties in the lower mantle that are more consistent with those inferred from seismic observations. Constraints on the SiO2 and iron contents in the mantle are inferred from the comparison of thermodynamic and seismological data.  相似文献   

19.
Garnet lherzolite xenoliths of similar petrography and mineralogy are found in the Elwin Bay, Nanorluk, and Amayersuk kimberlites. The xenoliths are either coarse equant to coarse tabular or porphyroclastic in texture. Compositions of coexisting pyroxenes indicates equilibration at 1000–1270° C at 34–41 kb (Wood-Banno/Wood method) or 865–1200° C at 29–36 kb (Wells/Wood method). No simple correlation exists between textural types and equilibration temperature. A primary spinel-bearing garnet lherzolite has equilibrated at 840° C at 21 kb (Wells/Wood) and provides the only known example of a xenolith with relatively high Cr/Cr+Al which has equilibrated at the spinel to garnet lherzolite transition along the continental geotherm. The pressure and temperature estimates for the xenoliths lie above those of the steady state geotherm and indicate that a perturbed geotherm existed in this region at the time of kimberlite intrusion. The formation of perturbed geotherms is discussed and it is considered that the upper high temperature limbs of inflected geotherms are transient pseudogeotherms generated in response to a thermal aureole about a rising mantle diapir and that the lherzolites which define such a geotherm represent a telescoped section of the mantle and include xenoliths derived from above and below the point of kimberlite liquid segregation. The lower temperature limbs of inflected geotherms are considered to be representative of the steady state geotherm and are sampled by the kimberlite which after segregation from the diapir rises at a much faster rate than the parent diapir and passes through material which is unaffected by the diapir thermal aureole.  相似文献   

20.
Compositional zonation in garnets in peridotite xenoliths   总被引:1,自引:0,他引:1  
Garnets in 42 peridotite xenoliths, most from southern Africa, have been analyzed by electron probe to seek correlations between compositional zonation and rock history. Xenoliths have been placed into the following 6 groups, based primarily upon zonation in garnet: I (12 rocks)-zonation dominated by enrichment of Ti and other incompatible elements in garnet rims; II (10 rocks)-garnet nearly homogeneous; III (8 rocks)-rims depleted in Cr, with little or no related zonation of Ti; IV (3 rocks)-slight Ti zonation sympathetic to that of Cr; V (3 rocks)-garnet rims depleted or enriched in Cr, and chromite included in garnet; VI (6 rocks)-garnets with other characteristics. Element partitioning between olivine, pyroxene, and garnet rims generally is consistent with the assumption of equilibrium before eruption. Although one analyzed rock contains olivine and pyroxene that may have non-equilibrated oxygen isotopes, no corresponding departures from chemical equilibrium were noted. Causes of zoning include melt infiltration and changes in temperature and pressure. Zonation was caused or heavily influenced by melt infiltration in garnets of Group I. In Groups III, IV, and V, most compositional gradients in garnets are attributed to changes in temperature, pressure, or both, and gradients of Cr are characteristic. There are no simple relationships among wt% Cr2O3 in garnet, calculated temperature, and the presence of compositional gradients. Rather, garnets nearly homogeneous in Cr are present in rocks with calculated equilibration temperatures that span the range 800–1500 °C. Although the most prominent Cr gradients are found in relatively Cr-rich garnets of rocks for which calculated temperatures are below 1050 °C, gradients are well-defined in a Group IV rock with T1300 °C. The variety of Cr gradients in garnets erupted from a range of temperatures indicates that the zonations record diverse histories. Petrologic histories have been investigated by simulated cooling of model rock compositions in the system CaO–MgO–Al2O3–SiO2–Cr2O3. Proportions and compositions of pyroxene and garnet were calculated as functions of P and T. The most common pattern of zonation in Groups III and IV, a decrease of less than 1 wt% Cr2O3 core-to-rim, can be simulated by cooling of less than 200 °C or pressure decreases of less than 1 GPa. The preservation of growth zonation in garnets with calculated temperatures near 1300 °C implies that these garnets grew within a geologically short time before eruption, probably in response to fast cooling after crystallization of a small intrusion nearby. Progress in interpreting garnet zonations in part will depend upon determinations of diffusion rates for Cr. Zonation formed by diffusion within garnet cannot always be distinguished from that formed by growth, but Ca–Cr correlations unlike those typical of peridotite suite garnets may document diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号