首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Alaknanda river basin is considered to be tectonically active where damaging earthquakes and landslides have occurred. The whole basin was divided into 8 sub-basins to carry out morphometric analyses, hypsometric integral (HI) analysis and valley floor width to valley height ratio (V f) factor. The sub-basins 2 and 3 show that they are highly active, because of the higher values of bifurcation ratio, stream frequency asymmetric factor, and lower values of form factor, elongation ratio and circulatory ratio. In these areas, HI values are very low indicating that the landscape is highly eroded, deeply dissected and tectonically active. The result obtained from V f was similar which classified both these basins as highly active. Morphometric analysis, HI and V f analyses along with structural map of study area are used to prepare morpho-tectonic map classifying the whole area into very high, high, moderate and low zones of tectonic activity. This map clearly indicates that the areas near MCT II (Munsiari Thrust), MCT III (Ramgarh Thrust) and North Almora Thrust are tectonically very active which fall in sub-basins 2, 3, 4 and parts of 5. Various locations such as Chamoli, Birahi, Pipalkoti, Rudraprayag, etc. are situated in these zones where many earthquakes and landslides occur every year. Moreover, the data plotted for earthquakes and landslides occurrences are consistent with morpho-tectonic map and can be used as a precursor for demarcation of natural hazard vulnerable zones.  相似文献   

2.
The present study aims to understand evolution of the Lesser Himalaya, which consists of (meta) sedimentary and crystalline rocks. Field studies, microscopic and rock magnetic investigations have been carried out on the rocks near the South Almora Thrust (SAT) and the North Almora Thrust (NAT), which separates the Almora Crystalline Zone (ACZ) from the Lesser Himalayan sequences (LHS). The results show that along the South Almora Thrust, the deformation is persistent; however, near the NAT deformation pattern is complex and implies overprinting of original shear sense by a younger deformational event. We attribute this overprinting to late stage back-thrusting along NAT, active after the emplacement of ACZ. During this late stage back-thrusting, rocks of the ACZ and LHS were coupled. Back-thrusts originated below the Lesser Himalayan rocks, probably from the Main Boundary Thrust, and propagated across the sedimentary and crystalline rocks. This study provides new results from multiple investigations, and enhances our understanding of the evolution of the ACZ.  相似文献   

3.
To study neotectonics, the structural and morphotectonic aspects are studied along a part of mountain front region of Northeast Himalaya, Arunachal Pradesh, India. Unpaired river terraces are recognized near north of transverse Burai River exit, which is cut by an oblique fault. Across this fault, fluvial terraces are located at heights of 22.7 and 3 m, respectively, on the left and right banks. A water gap is formed along the river channel where the uplifted Middle Siwalik sandstone beds dipping 43° towards ENE direction, thrust over the Quaternary deposit consisting of boulders, cobbles, pebbles and sandy matrix. This river channel incised the bedrock across the intraformational Ramghat Thrust along which the rocks of the Middle Siwalik Formation thrust over the Upper Siwalik Formation. Recent reactivated fault activity is suggested north of the Himalayan Frontal Thrust that forms the youngest deforming front of the Himalaya. The uplifting along the stream channel is noticed extended for a distance of ~130 m and as a result the alluvial river channel became a bedrock river. The relative displacement of rocks is variable along the length of strike–slip faults developed later within the Ramghat Thrust zone. Longitudinal and Channel gradient profiles of Burai River exhibit knick points and increase in river gradient along the tapering ends of the profiles. The study suggests active out-of-sequence neotectonically active thrusting along the mountain front. Neotectonics combined with climatic factor during the Holocene times presents a virgin landscape environment for studying tectonic geomorphology.  相似文献   

4.
The Himalayan foothill region is traversed by the Main Boundary Thrust, the Himalayan Frontal Thrust and the Piedmont Fault which make the entire densely populated foothill region vulnerable to seismic damages. Tectonic morphometric studies of selected active tectonic indices in conjunction with analysis of multispectral satellite imagery of the foothill terrain from North of Chandigarh to West of Dehradun have revealed the presence of two major active faults. The Jainti Devi Fault, in the vicinity of Chandigarh, has offset nearly all the drainage channels by about 780 m while the Trilokpur Fault, in the vicinity of Nahan, has offset the streams and rivulets by about 1500 m. The values of ratio of valley floor width to valley height, the stream length gradient index, stream sinuosity index and mountain front sinuosity index have been computed and these reaffirm the active tectonic setup of the foothill terrain. The digital terrain model and field investigations reveal the presence of offset streams, sag ponds, linear valleys, shutter ridges and pressure ridges along the fault trace. Trenching carried out in the region has revealed the presence of numerous seismites.  相似文献   

5.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

6.
Along the North Almora Thrust (NAT) in the Kumaun Lesser Himalaya, a zone of mylonitic rocks has developed due to strain localization during the tectonic emplacement of the Almora Nappe over the Lesser Himalayan Sequence. This zone is referred here as the NAT zone (NATZ) that is dissected by faults, which are transverse to the Himalayan orographic trend and are known as seismically active structures. Trending NNW-SSE these are the Chaukhutiya and Raintoli faults. Two E-W oriented subsidiary brittle faults across the Chaukhutiya Fault are also recognized. Based on the field study and magnetic fabric analysis an attempt has been made to evaluate the deformation and kinematic history of northeastern margin of the Almora Nappe superposed by the Chaukhutiya faulting that coincides with northeastern margin of the NAT. Field study reveals brittle-ductile and brittle regimes of deformation along the Chaukhutiya Fault. Away from the NAT variable attitudes (E-W or ENE-WSW with gentle dip) of field foliation and axial planes of folds are observed, whereas at and near the NAT the attitudes of beds, including curved lithounits, are steeply dipping and are oriented parallel with the NNW-SSE trending NAT. Curvature in fold hinge line and discontinuous occurrence of lithounits are observed along the fault.  相似文献   

7.
The Piedmont Zone is the least studied part of the Ganga Plain. The northern limit of the Piedmont Zone is defined by the Himalayan Frontal Thrust (HFT) along which the Himalaya is being thrust over the alluvium of the Ganga Plain. Interpretation of satellite imagery, Digital Terrain Models (DTMs) and field data has helped in the identification and mapping of various morphotectonic features in the densely forested and cultivated Piedmont Zone in the Kumaun region of the Uttarakhand state of India. The Piedmont Zone has formed as a result of coalescing alluvial fans, alluvial aprons and talus deposits. The fans have differential morphologies and aggradation processes within a common climatic zone and similar litho-tectonic setting of the catchment area. Morphotectonic analysis reveals that the fan morphologies and aggradation processes in the area are mainly controlled by the ongoing tectonic activities. Such activities along the HFT and transverse faults have controlled the accommodation space by causing differential subsidence of the basin, and aggradation processes by causing channel migration, channel incision and shifting of depocentres. The active tectonic movements have further modified the landscape of the area in the form of tilted alluvial fan, gravel ridges, terraces and uplifted gravels.  相似文献   

8.
The analysis of drainage basin morphotectonic indices is applied in assessment of the influence of tectonic activity on thirteen selected drainage basins of the streams having linear courses and flowing over two very prominent regional structures of northeast India, viz. the Belt of Schuppen and the Dauki fault. Such analysis has been made in order to assess the influence of tectonic activity of these structures on the morphology of the drainage basins of those streams.The different morphotectonic indices considered are: Basin elongation ratio, hypsometric integral, steepness index and profile concavity, drainage basin asymmetry, valley floor width to valley height ratio, longitudinal profiles, stream length gradient index and mountain front sinuosity. Results of the analysis of the morphotectonic indices of the drainage basins infer that morphology of both the streams and drainage basins have been influenced by the regional structures and the present tectonic status of these two structures varies from active to slightly active phase. No significant influence of lithology is seen in the distribution pattern of the anomalous knick points along the longitudinal profiles. The study also reveals that presently the state of tectonic activity is not uniform within the same regional structure and the Belt of Schuppen is relatively more active as compared to the Dauki fault.  相似文献   

9.
The Kangra Re-entrant in the NW Himalaya is one of the most seismically active regions, falling into Seismic Zone V along the Himalaya. In 1905 the area experienced one of the great Himalayan earthquakes with magnitude 7.8. The frontal fault system – the Himalayan Frontal Thrust (HFT) associated with the foreland fold – Janauri Anticline, along with other major as well as secondary hinterland thrust faults, provides an ideal site to study the ongoing tectonic activity which has influenced the evolution of drainage and landscape in the region. The present study suggests that the flat-uplifted surface in the central portion of the Janauri Anticline represents the paleo-exit of the Sutlej River. It is suggested that initially when the tectonic activity propagated southward along the HFT the Janauri Anticline grew along two separate fault segments (north and south faults), the gap between these two fault and the related folds allowed the Sutlej River to flow across this area. Later, the radial propagation of the faults towards each other resulted in an interaction of the fault tips, which caused the rapid uplift of the area. Rapid uplift resulted in the disruption and longitudinal deflection of the Sutlej river channel. Fluvial deposits on the flat surface suggest that an earlier fluvial system flowed across this area in the recent past. Geomorphic signatures, like the sharp mountain fronts along the HFT in some places, as well as along various hinterland subordinate faults like the Nalagarh Thrust (NaT), the Barsar Thrust (BaT) and the Jawalamukhi Thrust (JMT); the change in the channel pattern, marked by a tight incised meander of the Beas channel upstream of the JMT indicate active tectonic movements in the area. The prominent V-shaped valleys of the Beas and Sutlej rivers, flowing across the thrust fronts, with Vf values ranging from <1.0–1.5 are also suggestive of ongoing tectonic activity along major and hinterland faults. This suggests that not only is the HFT system active, but also the other major and secondary hinterland faults, viz. the MBT, MCT, SnT, NaT, BaT, and the JMT can be shown to have undergone recent tectonic displacement.  相似文献   

10.
In the present paper integrated appraisals of landform evolution and their geomorphic features, drainage networks across the upper part of Yamuna river basin have been attempted by using various geomorphic indices such as watershed, drainage density (D), drainage texture, stream-gradient index (SL), hypsometric integral (HI), drainage basin asymmetry (AF), mountain front sinuosity (Smf), sinuosity index (SI), valley floor height and width ratio (Vf) and data of historical earthquakes in characterizing the basin in view of relative index of active tectonics (RIAT) on DEM in geographic information systems (GIS) environment to assess the influence of recent tectonics on geomorphologic growth of the basin.The substantiated RIAT classes through some field observations and corroborated by recent seismicity reveal the recent activation of Yamuna tear faults in the basin with delineation of four RIAT classes such as class-1 (inactive 9.8% of the area), class-2 (low active; 16.40% of the area), class-3 (moderately active; 42.38% of the area) and class-4 (very active; 31.62%). The results suggest that the Himalayan frontal thrust (HFT) and Yamuna tear (YT) located in the basin is morphogenic in nature and got activated several times as evidenced by number of seismic activities in the basin and adjoining regions. The incision, and sharp turning of rivers, crenulations and warping of cross beddings/laminations and silt/clay beds and lenses, megascopic and mesoscopic faulting in sediment sequences suggest a very active nature of the HFT and YT till date in association with three prolific microseismogenic weak zones These active discontinuities appear to support the formation and development of different deformational features in sediment sequences which may be indirectly related to subduction and underthrusting of Indian plate under Eurasian plate below the Himalayan mountain chain.  相似文献   

11.
Alluvial fan is a depositional fluvial landform that is characterised by sediment flow and hydrological processes and is also controlled by tectonic activity. These extraordinary features have always attracted researchers since the past as they preserve the past records, but now, this study is focused on the formation meso-level fans with its spatio-temporal dynamic nature. These tributaries have formed secondary alluvial fans at their debouching points. The dynamics of the fans are controlled by the hydrological responses and tectonic base and also by the sedimentation processes. The origin of these tributaries and their respective fans are related to the last stage of Himalayan uplift. This is the region of Himalayan foreland basin which contains the main frontal thrust and makes the region tectonically very active. The region is drained by many large rivers and their numerous tributaries. The active tectonism, the configuration of the basin and also the deposition of the sediments carried by these rivers have formed alluvial fans where the channel debouches into the widened valley. In the present study, the meso-level alluvial fans formed by River Gish and the Rivers Neora and Murti have been studied. Both these fans are present in the piedmont region of the Himalayas, but they deliver different characteristics, and the nature of their deposition is also different. This is mainly because of the influence of the minor faults in the region which control the channel pattern and also have a great influence in the sediment delivery to the downstream section of the channels. Thus, in order to understand the influence of tectonics in the dynamics of these fans, some morphotectonic parameters have been taken into consideration. These include mountain front sinuosity index, valley floor width-to-depth ratio, and tectonic tilt. The calculated hypsometric integral also depicts that the two fans are at different stages of development.  相似文献   

12.
Nepal can be divided into the following five east–west trending major tectonic zones. (i) The Terai Tectonic Zone which consists of over one km of Recent alluvium concealing the Churia Group (Siwalik equivalents) and underlying rocks of northern Peninsular India. Recently active southward-propagating thrusts and folds beneath the Terai have affected both the underlying Churia and the younger sediments. (ii) The Churia Zone, which consists of Neogene to Quaternary foreland basin deposits and forms the Himalayan mountain front. The Churia Zone represents the most tectonically active part of the Himalaya. Recent sedimentologic, geochronologic and paleomagnetic studies have yielded a much better understanding of the provenance, paleoenvironment of deposition and the ages of these sediments. The Churia Group was deposited between ∼14 Ma and ∼1 Ma. Sedimentary rocks of the Churia Group form an archive of the final drama of Himalayan uplift. Involvement of the underlying northern Peninsular Indian rocks in the active tectonics of the Churia Zone has also been recognised. Unmetamorphosed Phanerozoic rocks of Peninsular India underlying the Churia Zone that are involved in the Himalayan orogeny may represent a transitional environment between the Peninsula and the Tethyan margin of the continent. (iii) The Lesser Himalayan Zone, in which mainly Precambrian rocks are involved, consists of sedimentary rocks that were deposited on the Indian continental margin and represent the southernmost facies of the Tethyan sea. Panafrican diastrophism interrupted the sedimentation in the Lesser Himalayan Zone during terminal Precambrian time causing a widespread unconformity. That unconformity separates over 12 km of unfossiliferous sedimentary rocks in the Lesser Himalaya from overlying fossiliferous rocks which are >3 km thick and range in age from Permo-Carboniferous to Lower to Middle Eocene. The deposition of the Upper Oligocene–Lower Miocene fluvial Dumri Formation records the emergence of the Himalayan mountains from under the sea. The Dumri represents the earliest foreland basin deposit of the Himalayan orogen in Nepal. Lesser Himalayan rocks are less metamorphosed than the rocks of the overlying Bhimphedis nappes and the crystalline rocks of the Higher Himalayan Zone. A broad anticline in the north and a corresponding syncline in the south along the Mahabharat range, as well as a number of thrusts and faults are the major structures of the Lesser Himalayan Zone which is thrust over the Churia Group along the Main Boundary Thrust (MBT). (iv) The crystalline high-grade metamorphic rocks of the Higher Himalayan Zone form the backbone of the Himalaya and give rise to its formidable high ranges. The Main Central Thrust (MCT) marks the base of this zone. Understanding the origin, timing of movement and associated metamorphism along the MCT holds the key to many questions about the evolution of the Himalaya. For example: the question of whether there is only one or whether there are two MCTs has been a subject of prolonged discussion without any conclusion having been reached. The well-known inverted metamorphism of the Himalaya and the late orogenic magmatism are generally attributed to movement along the MCT that brought a hot slab of High Himalayan Zone rocks over the cold Lesser Himalayan sequence. Harrison and his co-workers, as described in a paper in this volume, have lately proposed a detailed model of how this process operated. The rocks of the Higher Himalayan Zone are generally considered to be Middle Cambrian to Late Proterozoic in age. (v) The Tibetan Tethys Zone is represented by Cambrian to Cretaceous-Eocene fossiliferous sedimentary rocks overlying the crystalline rocks of the Higher Himalaya along the Southern Tibetan Detachment Fault System (STDFS) which is a north dipping normal fault system. The fault has dragged down to the north a huge pile of the Tethyan sedimentary rocks forming some of the largest folds on the Earth. Those sediments are generally considered to have been deposited in a more distal part of the Tethys than were the Lesser Himalayan sediments.The present tectonic architecture of the Himalaya is dominated by three master thrusts: the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The age of initiation of these thrusts becomes younger from north to south, with the MCT as the oldest and the MFT as the youngest. All these thrusts are considered to come together at depth in a flat-lying decollement called the Main Himalayan Thrust (MHT). The Mahabharat Thrust (MT), an intermediate thrust between the MCT and the MBT is interpreted as having brought the Bhimphedi Group out over the Lesser Himalayan rocks giving rise to Lesser Himalayan nappes containing crystalline rocks. The position of roots of these nappes is still debated. The Southern Tibetan Detachment Fault System (STDFS) has played an important role in unroofing the higher Himalayan crystalline rocks.  相似文献   

13.
The Kemalpa?a Basin is one of the Quaternary basins in Western Anatolia and represents the south-western branch of the Gediz Graben system in this extensional province. This basin has been formed under the NNE–SSW trending extensional tectonic regime. It is bounded by a major fault, the Kemalpa?a Fault, in the south and it is bounded by a number of downstepping faults, called as Spilda?? Fault Zone, in the north. Both margin-bounding faults of the Kemalpa?a Basin are oblique-slip normal faults. In order to better understand the activities of these faults, we investigated the tectonic geomorphology of the Kemalpa?a Basin and interpreted the effect of tectonic activity on the geomorphological evolution using geomorphic markers such as drainage basin patterns, facet geometries and morphometric indices such as hypsometric curves and integral (HI), basin shape index (Bs), valley floor width-to-height ratio (Vf) and mountain front sinuosity (Smf). The morphometric analysis of 30 drainage basins in total and mountain fronts bounding the basin from both sides suggests a relatively high degree of tectonic activity. The mountain front sinuosity (Smf) generally varies from 1.1 to 1.3 in both sides of the basin suggesting the active fronts and facet slopes (12°–32°) suggest a relatively high degree of activity along the both sides of the Kemalpa?a Basin. Similarly, the valley floor width-to-height ratios (Vf) obtained from the both sides indicate low values varying from 0.043 to 0.92, which are typical values (<1) for tectonically active mountain fronts. The all values obtained are lower for the southern side. Therefore, we suggest that the tectonic activity of the Kemalpa?a Fault higher than the Spilda?? Fault Zone. This difference that can be arised from the different uplift rates also reveals the typical asymmetric characteristics of the Kemalpa?a Basin. Additionally, the trapezoidal facets which have been observed on the southern side of the basin indicate that the Kemalpa?a Fault is evolutionally more active as compared to the Spilda?? Fault Zone. The geomorphic indices indicate that the Quaternary landscape evolution of the Kemalpa?a Basin was governed by tectonic and erosional processes, and also the all results of morphometric analysis suggest a relatively high degree of tectonic activity along the faults bounding the Kemalpa?a Basin. Moreover, considering that active large normal faults with an average 15 km long can cause major earthquake, the earthquake hazard in the Kemalpa?a Basin should be investigated in detailed paleoseismological studies.  相似文献   

14.
鄂尔多斯地块南缘处在盆地与秦岭造山带之间这一盆—山结合的过渡部位,由于构造位置的特殊性,自古生代以来其构造及沉积面貌与盆地腹部地区存在较大差异,具体表现在:1)早古生代沉积开始早、结束晚;2)晚古生代沉积开始晚;3)印支期西南部发生局部坳陷沉降;4)燕山晚期盆地南部强烈抬升(远高于盆地东部的同期抬升);5)喜马拉雅期渭河地区快速沉陷与渭北隆升。盆地南部经历了3次大的构造格局转换:一是晚古生代末—印支期西南部“由隆到坳”的构造转换;二是印支期末—燕山期主体构造走向由北西—南东向到南北向的转换(构造转向);三是燕山期末—喜马拉雅期渭河地区由强烈隆升到快速沉降的转换(构造反转)。盆地南部在不同时期所表现出的与盆地本部的不同耦合特征均根源于区域大地构造背景的差异:1)早古生代处于活动大陆边缘构造环境;2)海西期—印支期受古特提斯洋开裂—闭合的影响;3)燕山期受古太平洋板块俯冲的影响;4)喜马拉雅期受印度板块俯冲与太平洋板块俯冲的共同制约。鄂尔多斯地块南缘经历强烈伸展与造山过程,引起了其与盆地腹部的构造—沉积分异。  相似文献   

15.
Western Anatolia is one of the world’s most seismically active regions. A nearly N–S-oriented extension caused the formation of E–W- and NE–SW-trending major grabens, creating the potential for earthquakes with magnitudes ≥ 5. The fault segments of the NE-trending Çameli Basin were evaluated using geomorphic indices, common tools for assessment of relative tectonic activity in such areas. Quantitative measurement of geomorphic indices including mountain-front sinuosity (Smf; 1.35–2.39), valley floor width-to-height ratios (Vf; 0.08?0.37), and hypsometric integral (HI; 0.31–1.05) suggest relatively higher tectonic activity along western and southern part of the basin. Hypsometric curves for all segments of the faults mostly exhibit concave or straight profiles, signifying existence of young mountain fronts in the Çameli Basin. These calculations indicate that the Çameli Basin is tectonically active and, southern/south-western areas of this depression have earthquake potential, consistent with epicentres of recent earthquakes, occurred along some fault segments. Possible reason of this activity seems to be related to the E–W-trending corridor lying between the Gulf of Gökova and south-eastern part of the Çameli Basin, represented by active normal faults. These findings should be valid beyond the Çameli Basin for similar situations along the Isparta Angle’s western margin.  相似文献   

16.
The geology and tectonics of the Himalaya has been reviewed in the light of new data and recent studies by the author. The data suggest that the Lesser Himalayan Gneissic Basement (LHGB) represents the northern extension of the Bundelkhand craton, Northern Indian shield and the large scale granite magmatism in the LHGB towards the end of the Palæoproterozoic Wangtu Orogeny, stabilized the early crust in this region between 2-1.9 Ga. The region witnessed rapid uplift and development of the Lesser Himalayan rift basin, wherein the cyclic sedimentation continued during the Palæoproterozoic and Mesoproterozoic. The Tethys basin with the Vaikrita rocks at its base is suggested to have developed as a younger rift basin (~ 900 Ma ago) to the north of the Lesser Himalayan basin, floored by the LHGB. The southward shifting of the Lesser Himalayan basin marked by the deposition of Jaunsar-Simla and Blaini-Krol-Tal cycles in a confined basin, the changes in the sedimentation pattern in the Tethys basin during late Precambrian-Cambrian, deformation and the large scale granite activity (~ 500 ± 50 Ma), suggests a strong possibility of late Precambrian-Cambrian Kinnar Kailas Orogeny in the Himalaya. From the records of the oceanic crust of the Neo-Tethys basin, subduction, arc growth and collision, well documented from the Indus-Tsangpo suture zone north of the Tethys basin, it is evident that the Himalayan region has been growing gradually since Proterozoic, with a northward shift of the depocentre induced by N-S directed alternating compression and extension. During the Himalayan collision scenario, the 10–12km thick unconsolidated sedimentary pile of the Tethys basin (TSS), trapped between the subducting continental crust of the Indian plate and the southward thrusting of the oceanic crust of the Neo-Tethys and the arc components of the Indus-Tangpo collision zone, got considerably thickened through large scale folding and intra-formational thrusting, and moved southward as the Kashmir Thrust Sheet along the Panjal Thrust. This brought about early phase (M1) Barrovian type metamorphism of underlying Vaikrita rocks. With the continued northward push of the Indian Plate, the Vaikrita rocks suffered maximum compression, deformation and remobilization, and exhumed rapidly as the Higher Himalayan Crystallines (HHC) during Oligo-Miocene, inducing gravity gliding of its Tethyan sedimentary cover. Further, it is the continental crust of the LHGB that is suggested to have underthrust the Himalaya and southern Tibet, its cover rocks stacked as thrust slices formed the Himalayan mountain and its decollement surface reflected as the Main Himalayan Thrust (MHT), in the INDEPTH profile.  相似文献   

17.
An integrated morphometric and hypsometric analysis coupled with asymmetric factor used as a proxy for the landscape evolution of the catchment of Karuvannur River. The present study area is a sixth order tropical river in the central Kerala which supplies water and sediments to the Vembanad-Kol Ramsar site. The Karuvannur River Basin (KRB) has been divided into six sub-watersheds (SW). Morphometric parameters (areal, linear, and relief) and hypsometric and asymmetric factors are measured for the delineation of morphotectonic evolution of the area. High values of drainage density, texture, ruggedness number, and hypsometric integral with relatively high volume of leftover rocks in the basin in SW-II and SW-III compared to the entire basin of KRB imply that these two sub-watersheds have been influenced by the tectonic activities. Further, detailed asymmetric data indicated that these two watersheds are tilted in opposite direction. It may be the result of reactivation of Precambrian fault/lineament in recent past. This has been supported by recent tremors and neotectonic studies in Kerala. Moreover, detailed field evidence along with google imagery revealed that the entire basin is a part of regional anticline associated with PCSZ. Geomorphic response to disturbance will produce a sensible, recognizable response; it can be well studied in rivers through detailed study of their sensitivity or behavioral changes. Rivers have an enormous capacity to absorb perturbation and these types of studies are essential for identifying/measuring tectonic activities, sediment diffusion, surface runoff in a drainage basin, and as an important tool for target oriented micro watershed management.  相似文献   

18.
GEOLOGY OF THE NORTHERN ARUN TECTONIC WINDOW1 BordetP .Recherchesg啨ologiquesdansl’HimalayaduN啨pal,r啨gionduMakalu[R].EditionsduCNRS ,Paris ,196 12 75 . 2 BordetP .G啨ologiedeladalleduTibet (Himalayacentral) [J].M啨moireshorss啨riedelaSociet啨g啨ologiquedeFrance,1977,8:2 35~ 2 5 0 . 3 BurcfielBC ,ChenZ ,HodgesKV ,etal.TheSouthTibetanDetachmentSystem ,Hima…  相似文献   

19.
Groundwater samples were analyzed from 71 springs and wells as part of a larger study in a region of compressional tectonic regime. The study site covers the Peshawar basin and surroundings in the Himalayan foreland of Pakistan. The northern portion is mountainous and the water table is discontinuous in different intermontane valleys, with abundant springs (with normal and anomalous temperatures and composition). The southern part is divided into isolated basins with a number of drilled (“deep”) and dug (“shallow”) wells. Hydrochemical signatures of elevated strontium (Sr), SiO2, boron (B)—and the geothermometric signatures—all indicate a deep circulation of the emerging groundwater. Moreover, for several of the sample sites, water chemical compositions, measured spring and water well temperatures, and reservoir temperatures calculated for spring waters, all point to origin from deep horizons within the basin. Remarkable proximity of all the thermal and hydrochemical anomalies to major faults suggests that the waters ascended along these faults from greater depths. The area is a natural western extension of the Himalayan Geothermal Belt described in earlier literature for the eastern and central Himalayas.  相似文献   

20.
The continuous process of continent–continent collision between the Indian and the Eurasian plates has led to the formation of the Himalayan range and continuously caused earthquakes in the region. Large earthquakes with magnitudes of 8 and above occur in this region infrequently, releasing the elastic strain accumulated over years around the plate boundary. Geodetic measurements can help estimate the strain distribution along the fault system. These measurements provide information on active deformations and associated potential seismic hazards along the Himalayan arc. In order to understand the present deformation around the plate boundary, we collected GPS data during three campaigns in the years of 2005–2007 at 16 sites in the Kumaun region of the Lesser Himalaya. Horizontal velocity vectors estimated in ITRF2000 are found to be in the range of 41–50 mm/yr with an uncertainty level of the order of 1 mm/yr. The velocity field indicates that the present convergence of around 15 mm/yr takes place in the Kumaun Himalaya. Further, we estimate the strain components in the study area for understanding the currently active tectonic process in the region. The estimated dilatational strain indicates that the northern part near the Main Central Thrust (MCT) is more compressional than the southern part. Maximum shear strain is mostly accommodated in the northern part too. The maximum shear and dilatational strain rates are about 1.0 and 0.5 μstrain/yr. It is seen that the distribution of high shear strain spatially correlates with seismicity. The maximum of extensional and compressional strains due to the force acting along the Main Central Thrust (MCT) in the NW–SE direction are found to be 0.4 and 0.1 μstrain/yr, respectively. The maximum shear strain in the northern part of the Himalaya appears to be associated with the convergence of the region proposed by other geophysical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号