首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The evolution of the multipolar structure of the magnetic field of isolated neutron stars is studied assuming the currents to be confined to the crust. We find that, except for multipoles of very high order ( l ≳25), the evolution is similar to that of a dipole. Therefore no significant evolution is expected in the pulse shape of isolated radio pulsars because of the evolution of the multipole structure of the magnetic field.  相似文献   

2.
3.
In this paper we present a new result, namely that the primal magnetic field of the collapsed core during a supernova explosion will, as a result of the conservation of magnetic flux, receive a massive boost to more than 90 times its original value by the Pauli paramagnetization of the highly degenerate relativistic electron gas just after the formation of the neutron star. Thus, the observed super-strong magnetic field of neutron stars may originate from the induced Pauli paramagnetization of the highly degenerate relativistic electron gas in the interior of the neutron star. We therefore have an apparently natural explanation for the surface magnetic field of a neutron star.  相似文献   

4.
5.
We describe the possible electromagnetic signals expected from the magnetospheric interactions of a neutron star binary prior to merger. We find that both radio and X-ray signals of detectable strength are possible. We discuss possible links with the phenomenon of gamma-ray bursts (GRBs) and describe the prospects for direct detection of these signals in searches for radio and X-ray transients.  相似文献   

6.
7.
8.
A possible mechanism for screening of the surface magnetic field of an accreting neutron star, by the accreted material, is investigated. We model the material flow in the surface layers of the star by an assumed two-dimensional velocity field satisfying all the physical requirements. Using this model velocity we find that, in the absence of magnetic buoyancy, the surface field is screened (i.e. there is submergence of the field by advection) within the time-scale of material flow of the top layers. On the other hand, if magnetic buoyancy is present, the screening happens over a time-scale that is characteristic of the slower flow of the deeper (and hence, denser) layers. For accreting neutron stars, this longer time-scale turns out to be about 105 yr, which is of a similar order of magnitude to the accretion time-scale of most massive X-ray binaries.  相似文献   

9.
Atmospheres and spectra of strongly magnetized neutron stars   总被引:1,自引:0,他引:1  
We construct atmosphere models for strongly magnetized neutron stars with surface fields     and effective temperatures     . The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars, including radio pulsars, soft gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere is composed of pure hydrogen or helium and is assumed to be fully ionized. The radiative opacities include free–free absorption and scattering by both electrons and ions computed for the two photon polarization modes in the magnetized electron–ion plasma. Since the radiation emerges from deep layers in the atmosphere with     , plasma effects can significantly modify the photon opacities by changing the properties of the polarization modes. In the case where the magnetic field and the surface normal are parallel, we solve the full, angle-dependent, coupled radiative transfer equations for both polarization modes. We also construct atmosphere models for general field orientations based on the diffusion approximation of the transport equations and compare the results with models based on full radiative transport. In general, the emergent thermal radiation exhibits significant deviation from blackbody, with harder spectra at high energies. The spectra also show a broad feature     around the ion cyclotron resonance     , where Z and A are the atomic charge and atomic mass of the ion, respectively; this feature is particularly pronounced when     . Detection of the resonance feature would provide a direct measurement of the surface magnetic fields on magnetars.  相似文献   

10.
11.
We apply the model of flux expulsion from the superfluid and superconductive core of a neutron star, developed by Konenkov & Geppert, both to neutron star models based on different equations of state and to different initial magnetic field structures. Initially, when the core and the surface magnetic field are of the same order of magnitude, the rate of flux expulsion from the core is almost independent of the equation of state, and the evolution of the surface field decouples from the core field evolution with increasing stiffness. When the surface field is initially much stronger than the core field, the magnetic and rotational evolution resembles that of a neutron star with a purely crustal field configuration; the only difference is the occurrence of a residual field. In the case of an initially submerged field, significant differences from the standard evolution only occur during the early period of the life of a neutron star, until the field has been re-diffused to the surface. The reminder of the episode of submergence is a correlation of the residual field strength with the submergence depth of the initial field. We discuss the effect of the re-diffusion of the magnetic field on the difference between the real and the active age of young pulsars and on their braking indices. Finally, we estimate the shear stresses built up by the moving fluxoids at the crust–core interface and show that these stresses may cause crust cracking, preferentially in neutron stars with a soft equation of state.  相似文献   

12.
13.
14.
15.
The evolutionary scenario of a neutron star magnetic field is examined assuming a spin-down induced expulsion of magnetic flux originally confined to the core, in a case in which the expelled flux undergoes ohmic decay. The nature of field evolution, for accreting neutron stars, is investigated incorporating the crustal microphysics and material movement resulting from accretion. This scenario may explain the observed field strengths of neutron stars but only if the crustal lattice contains a large amount of impurity, which is in direct contrast to the models that assume an original crustal field.  相似文献   

16.
On the basis of the current observational evidence, we put forward the case that the merger of two CO white dwarfs produces both a Type Ia supernova explosion and a stellar remnant, the latter in the form of a magnetar. The estimated occurrence rates raise the possibility that many, if not most, Type Ia supernovae might result from white dwarf mergers.  相似文献   

17.
A model of the ferromagnetic origin of magnetic fields of neutron stars is considered. In this model, the magnetic phase transition occurs inside the core of neutron stars soon after formation. However, owing to the high electrical conductivity the core magnetic field is initially fully screened. We study how this magnetic field emerges for an outside observer. After some time, the induced field that screens the ferromagnetic field decays enough to uncover a detectable fraction of the ferromagnetic field. We calculate the time-scale of decay of the screening field and study how it depends on the size of the ferromagnetic core. We find that the same fractional decay of the screening field occurs earlier for larger cores. We conjecture that weak fields of millisecond pulsars, B ∼108–109 G, could be identified with ferromagnetic fields of unshielded fraction ε ∼10−4–10−3 resulting from the decay of screening fields by a factor 1− ε in ∼108 yr since their birth.  相似文献   

18.
We present a model of a freely precessing neutron star, which is then compared against pulsar observations. The aim is to draw conclusions regarding the structure of the star, and to test theoretical ideas of crust–core coupling and superfluidity. We argue that, on theoretical grounds, it is likely that the core neutron superfluid does not participate in the free precession of the crust. We apply our model to the handful of proposed observations of free precession that have appeared in the literature. Assuming crust-only precession, we find that all but one of the observations are consistent with there being no pinned crustal superfluid at all; the maximum amount of pinned superfluid consistent with the observations is about 10−10 of the total stellar moment of inertia. However, the observations do not rule out the possibility that the crust and neutron superfluid core precess as a single unit. In this case the maximum amount of pinned superfluid consistent with the observations is about 10−8 of the total stellar moment of inertia. Both of these values are many orders of magnitude less than the 10−2 value predicted by many theories of pulsar glitches. We conclude that superfluid pinning, at least as it affects free precession, needs to be reconsidered.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号