首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neritid Smaragdia viridis represents the only known native marine mollusc that feeds on seagrass tissues in the European coasts, displaying a strong association with the seagrasses Cymodocea nodosa and Zostera marina in southern Spain. Seasonal dynamics, shell and radular morphology, growth and feeding of this gastropod have been studied in relation to each seagrass species for contrasting trends resulting from a different type of substrate and food source. In both seagrass species, stable populations of this gastropod occur at similar densities and displaying similar growth rates. Nevertheless shells of individuals from C. nodosa are narrower than those from Z. marina and some differences, possibly a consequence of increased wearing on C. nodosa, were noted amongst the radulae. In C. nodosa, a pre-ingestive selection for young epidermal tissues occurs as it was previously observed in Z. marina. The ingestion rate is higher in C. nodosa than in Z. marina but the absorption of ingested tissues is lower in the former. If both seagrasses are present, most individuals ingested preferentially Z. marina rather than C. nodosa, probably due to the lower digestibility of the epidermal tissues in the latter. Seagrass beds, especially those of Z. marina, are suffering a strong regression in southern Spain and the presence of stable populations of this neritid may be restricted to other declining seagrass species in the area.  相似文献   

2.
The feeding behaviour of adults of the marine calanoid copepod Centropages hamatus was studied in laboratory experiments with ciliates and phytoplankton as food sources. The ingestion rate of algal (flagellates, diatoms) and ciliate prey (oligotrichs) as a function of prey concentration could be described by a Holling type III functional response, with close to zero ingestion rates at concentrations below 5 µg C l− 1. In general, ingestion of ciliates was higher than ingestion of algae, and maximum feeding rates by adult males reached were half the feeding rates of adult females at prey concentrations exceeding 50 µg C l− 1. When diatoms and ciliates were offered together C. hamatus (both sexes) fed exclusively on ciliates as long as they contributed with more than 5% to the mixture. This indicates the capability of active prey selection and switching between suspension feeding and ambush predation. Therefore, the feeding behaviour of adult C. hamatus can be characterised as omnivorous with a preference for larger motile prey. This implies a trophic level above two, if there is a sufficient abundance of protozoan food available.  相似文献   

3.
Diel feeding pattern and food consumption of whitemouth croaker (Micropogonias furnieri) were examined and related to seasonal variations in an estuarine environment. To determine diel feeding pattern whitemouth croaker were collected from the Patos Lagoon Estuary over 24 h (~3‐h intervals) and their stomach contents were examined. Food consumption of whitemouth croaker was determined from evacuation rates estimated experimentally and in the field. The results suggested that whitemouth croaker in the Patos Lagoon estuary feed all day long. However, whitemouth croaker showed higher feeding intensity and food consumption during daylight hours when the water transparency increased than in others when water transparency was low. Thus, whitemouth croaker seemed to intensify their feeding when they could see their prey. Daily food consumption was between 0.9 and 5.3% of body wet weight (these being the lowest and highest consumption rates during the winter and summer, respectively). The maximum predation impact of whitemouth croaker on their preferential prey, the tanaid Kalliapseudes schubartii, was 27indiv·m?2·day?1. The results suggested that the changes in water transparency seem to affect the diel feeding pattern and food consumption of whitemouth croaker. This could have important consequences for fish growth.  相似文献   

4.
Abstract. In situ feeding habits of the cyclopoid copepods Oncaea venusta, Corycaeus amazonicus, Oithona plumifera , and O. simplex were investigated by scanning electron microscope examination of fecal pellets, the contents of which reflected copepod gut contents upon capture. Peilet contents were compared with assemblages of phytoplankton present in surface waters at times of copepod collection. All samples were from the northern Gulf of Mexico. All four copepods fed upon phytoplankton and O. venusta also ingested other crustaceans. Dominant components of fecal pellets generally did not mirror those of available phytoplankton assemblages. In some cases, O. venusta ingested primarily larger-sized particles even when these were not most abundant, and in other cases it did not ingest large cells even when they were present in bloom concentrations. The presence of small (< 2–5 urn diameter) centric diatoms in O. venusta pellets suggests the possibility of feeding by mechanisms other than suspension or raptorial feeding. Limited observations suggest that C. amazonicus and O. plumifera may feed raptorially on larger particles even when these are not particularly abundant, and that the small O. simplex (< 500 nm total length) feeds mainly upon nanoplankton. It appears that cyclopoid feeding mechanisms are complex, and likely more so than those of many calanoids.  相似文献   

5.
Abstract. The spatial microdistribution of foraminifers was tested by the method of quadratic samplings on 2 sample grids in an intertidal pool of the northernmost Adriatic sea. Abundant species of foraminifers exhibit patchy distributions throughout; the distribution-patterns of some species correspond nearly completely. Using statistical methods (regression- and correlation-analyses) correlations to abiotic and biotic factors (water depth, exposure rate, seagrass, benthonic algae) were ascertained. The significant correlations of the foraminiferal frequencies to blue-green algae and/or diatoms enable an interpretation of these connexions as food dependences. Several foraminiferal species seem to have specific diets.  相似文献   

6.
Rocky shores in the North Atlantic are known for their zonation patterns of both algae and animals, which can be expected to greatly affect food availability to consumers at different height levels on the shore. We tested the hypothesis that consumers would feed on the most abundant suitable food source in their surroundings. In total 36 species/taxa of common primary producers and consumers were sampled for stable isotope analyses from a sheltered fucoid shore at Hvassahraun in south-western Iceland. A selection of these species was also collected seasonally and from different height levels. Feeding experiments, field observations and gut analyses were also conducted. Our results were in good overall agreement with pre-existing knowledge of trophic relationships in the rocky intertidal. Consumers often appeared to be assimilating carbon and nitrogen from the most common diet in their immediate surroundings. The predator Nucella lapillus was thus feeding on different prey at different height levels in accordance with different densities of prey species. When tested in the laboratory, individuals taken from low on the shore would ignore the gastropod Littorina obtusata, uncommon at that height level, even when starved, while individuals from mid-shore readily ate the gastropod. This indicated that some kind of learned behaviour was involved. There were, however, important exceptions, most noteworthy the relatively small contribution to herbivores, both slow moving (the gastropod L. obtusata) and fast moving (the isopod Idotea granulosa and the amphipod Gammarus obtusatus) of the dominant alga at this site, Ascophyllum nodosum. The recent colonizer Fucus serratus seemed to be favoured. Selective feeding was indicated both by isotope signatures as well as by results of feeding experiments. Seasonal migrations of both slow and fast moving species could partly explain patterns observed.  相似文献   

7.
Although grazing is considered an essential process controlling epiphyte biomass on seagrass leaves, there is still a lack of fundamental knowledge about the species‐specific consumption rates of the most common grazers in Mediterranean meadows. This study experimentally assessed the effect of Posidonia oceanica‐associated gastropod grazing on early successional biofilm and the species‐specific relationship between biofilm consumption rates and biofilm biomass. Two biofilms on artificial substrata, both developed in situ (in a P. oceanica meadow), one under ambient conditions and the other under nutrient‐enriched conditions, were offered in aquaria assays to nine species of grazers found in P. oceanica meadows. Biofilm consumption rates and their association with biofilm biomass were assessed. It was found that: (i) there was a positive association between biofilm consumption and biofilm biomass up to 20 mg Chl a·m?2 for Bittium reticulatum, Gibbula ardens, Jujubinus exasperatus and Tricolia pullus; (ii) Alvania montagui, B. reticulatum and Jujubinus striatus showed the highest consumption rates and are thus expected to be amongst the leading consumers in early‐successional epiphytic communities; (iii) there was not an increase of consumption rate when a substratum colonized under nutrient‐enriched conditions was offered to any of the nine studied species. This study provides species‐specific consumption rates knowledge that is useful for the assessment of the strength of grazer–epiphyte interactions and trophic fluxes in P. oceanica meadows.  相似文献   

8.
In the present study we examine factors that affect the downward flux of biogenic carbon in the NE subarctic Pacific, one of the important high-nutrient-low-chlorophyll (HNLC) regions in the open ocean. We focus on the role of mesozooplankton, since their seasonal peaks in biomass and growth are in phase with the seasonal variations in the downward POC fluxes, whereas phytoplankton biomass is more-or-less uniform year-round. The relative importance of mesozooplankton and algal sinking was examined using the pigment composition of material accumulated in short-term free-drifting sediment traps positioned just below the upper stratified surface layer (ca. 100–200 m). This was compared with the phytoplankton composition in the surface waters, and with the grazing activity (gut pigments and fecal pellet production rates) of the most abundant large copepods. We also examined whether the relationships between the downward flux of carbon and pelagic processes were similar in the coastal, continental margin and offshore HNLC regions of the NE subarctic Pacific, the latter represented by Ocean Station Papa (OSP).Our results show that grazing had a variable impact on the downward flux of biogenic carbon. Carbon-transformed pheopigments (particularly pyropheophorbide a, frequently associated with copepod grazing) represented up to 13% of the total downward POC flux inshore (in May 1996) and 8–9% at OSP in May and February 1996, respectively. This flux of pheopigments was accompanied by a large potential input of fecal pellets from large copepods (as estimated from defecation rates of freshly collected animals) only in May 1996 at OSP, suggesting that pheopigments came from other sources (other herbivores, senescing algae) in February. The larger flux of pheopigments in May was probably related to the abundance of mesozooplankton at that time of the year. During summer (August 1996), both the flux of pheopigments and the potential input of fecal pellets from large copepods were negligible at OSP, consistent with more intense pelagic recycling reported in other studies. Inshore, the flux of carbon-transformed pheopigments was slightly higher than at OSP, and its contribution to the downward POC flux in May 1996 was twice that in August 1996. In contrast, the potential input of feces carbon was higher in August than in May 1996, again suggesting other sources for pheopigments found in the traps. The contribution of sinking phytoplankton to the downward biogenic flux was negligible in summer, when prymnesiophytes (indicated by the presence of 19′-hexanoyloxyfucoxanthin) and pelagophytes (19′-butanoyloxyfucoxanthin-containing) dominated in surface offshore waters. The contribution of sinking algae was maximal (9%) in winter (February 1996) at OSP, when fucoxanthin (mainly a diatom marker) dominated the carotenoid composition in the traps and when the abundance of diatoms in surface waters showed its seasonal maximum for this station. Inshore, the low contribution of diatoms (fucoxanthin) to the sinking fluxes may have resulted from inadequate sampling (i.e. the spring bloom may have been missed).Overall, we conclude that: (a) large copepods significantly influenced the downward POC flux only during spring at OSP; (b) unidentified herbivores (e.g. salps, pteropods) producing pigmented, fast-sinking fecal material likely had an important impact during winter; (c) algal sinking made a small contribution to the downward POC flux (maximum in winter); and (d) neither algal sinking nor mesozooplankton grazing had a significant influence on the downward flux of biogenic material in summer at OSP.  相似文献   

9.
The dilution technique, combined with identification and enumeration of pico-, nano- and micro-plankton by microscopy, was used to estimate microzooplankton impact on the microbial community in surface waters of a coastal embayment on the NW Iberian upwelling system. Microzooplankton were important consumers of autotrophic and heterotrophic plankton in this system, feeding up to 93% of standing stock and more than 100% of production of several groups. Heterotrophic bacteria and heterotrophic picoflagellates experienced the highest and constant impact, with 75–84% of their standing stocks and 85–102% of their production being channelled through the microbial food web. Pico- and nano-phytoplankton were also consumed, although maximum grazing occurred on diatoms during upwelling events, coinciding with highest primary production. Predation on pico-nano-heterotrophs was especially relevant under downwelling conditions, when consumption of total carbon and particularly autotrophic carbon was considerably lower than during upwelling. The results suggest that the existence of a multivorous food web, extending from the microbial loop to the herbivorous food web, could be a major feature in this coastal upwelling system. The microbial loop, which occurs as a permanent background in the system, would contribute to sustain the microbial food web during downwelling, whereas the herbivorous food web could coexist with a microbial food web based on large diatoms during upwelling. The multivorous food web would partially divert diatoms from sinking and hence favour the retention of organic matter in the water column. This could enhance the energy transfer to higher pelagic trophic levels in coastal upwelling systems.  相似文献   

10.
The common tropical sea urchin Diadema antillarum Philippi is the dominant herbivore on fringing coral reefs in Barbados, West Indies. The biological importance of Diadema as an agent of energy transfer was evaluated from energy budgets constructed for the population and for individuals of 10 size groups. Monthly energy budgets for urchins of various size groups balance within 1 kcal except for urchins of the largest size group examined. Approximately 20% of the monthly net benthic primary production of the fringing coral reef is consumed by Diadema. This percentage is considerably larger than the 7% reported for the consumption of benthic algal production by a population of the temperate water sea urchin, Strongylocentrotus droebachiensis, feeding in kelp beds but is lower than the 47% reported for the consumption of sea grass by the tropical urchin Lytechinus variegatus. Higher rates of secondary production of Diadema compared to that of Strongylocentrotus may be in part due to higher net and gross growth efficiencies exhibited by Diadema. It is apparent that Diadema is more efficient at converting its algal food resources into urchin biomass than is Strongylocentrotus of similar size. In comparison to Strongylocentrotus and Lytechinus, Diadema releases as much energy to the benthos in the form of fecal pellet detritus as do the other two species. The production of fecal pellet detritus is the most important pathway of energy transfer on the fringing coral reef. Fecal pellet detritus contributes approximately 26 kcal m−2 month−1 to the benthic community. This amount is equivalent to 7·4% of the monthly net primary production of the benthic algae or approximately 37% of the caloric intake of the urchin population. In addition fecal pellet detritus produced by Diadema contains about 10 times the caloric content of surface sediments found to the north and south of the fringing reef and approximately 1·7 times the caloric content of sediments within the reef. The utilization of this energy-rich fecal pellet detritus by other reef organisms is discussed briefly.  相似文献   

11.
Platynereis dumerilii is found in large numbers in parchment-like tubes attached to sublittoral accumulations of detached maroalgae (principally Laminaria saccharina) in Kames Bay, Isle of Cumbrae and Lochranza, Isle of Arran. Its rôle in weed decomposition has been examined by comparing its responses (behavioural choice, growth rates, absorption efficiencies of both carbon and protein, gut retention times and rate of faecal output) to fresh and rotting weed. Worms grew significantly on either diet, with older individuals gaining more weight than small individuals. Animals of a standard size (derived from measurements of maximum bite size) feeding on fresh weed, however, grew significantly faster than those feeding on rotting weed. The former had a significantly higher protein absorption efficiency which was linearly related to protein content of ingested weed. This was not so on rotting weed. Organic carbon absorption efficiencies did not differ significantly between the two groups, neither did gut retention times nor rates of faecal output. Given a choice, Platynereis chooses to build its tube, and to feed, on fresh kelp—a strategem which ensures both maximum scope for occupancy before fronds decay and a superabundance of preferred food. Platynereis feeds around its tube entrance, recropping small areas for 2–3 days, prior to switching to another area nearby. Ciliate population densities on Platynereis faeces are much lower than on either homogenized or intact weed, associated with their lower, nutritional value (at first). Platynereis bubes act to bind kelp fronds together stabilizing the faecal input to infaunal detritivores. Platynereis is an example of a detritivore which exploits the detrital substratum directly.  相似文献   

12.
Echinogammarus marinus constitutes the most abundant amphipod species in Fucus spp. assemblages from many North Atlantic estuaries. However, there are some doubts about the real use of fucoids by the amphipod. Whilst some studies report the ingestion of Fucus vesiculosus by E. marinus, others suggest that the amphipod preference for fucoids is mostly related to sheltering rather than feeding, due to the high phlorotannin content of brown algae. The purpose of the present work was to disentangle this issue by checking the consumption rate and feeding preference of E. marinus on F. vesiculosus, its preferential habitat, and on Ulva intestinalis, a green algae abundant in the Mondego estuary (Western Coast of Portugal) and usually considered as highly palatable for herbivores.In a 2-stage laboratorial setup, fresh disks of the two types of algae were offered to E. marinus for three days. Consumption rates were estimated from differences between algal and animal initial and final fresh weights using a control correction factor, while preference was tested by differences in algal consumption rates when no choice was offered (stage 1) and when the two algae were offered simultaneously (stage 2).Results showed that E. marinus effectively consumed fresh F. vesiculosus in much higher amounts than U. intestinalis and significantly preferred to consume F. vesiculosus over U. intestinalis. Therefore, feeding habits must be one of the factors related to the close association of the amphipod with F. vesiculosus, although other factors may also be involved (e.g. sheltering).  相似文献   

13.
Gut content examination and trophic markers (fatty acids, stable isotopes of C and N) were combined to delineate the diet of the dominant species of amphipods from Mediterranean Posidonia oceanica seagrass meadows and to highlight trophic diversity among this community. Our results indicate that, although all dominant species heavily relied on macroalgal epiphytes, considerable interspecific dietary differences existed. Carbon stable isotope ratios notably showed that some of the amphipod species favored grazing on epiphytes from leaves or litter fragments (Apherusa chiereghinii, Aora spinicornis, Gammarus aequicauda), while others such as Dexamine spiniventris preferred epiphytes from rhizomes. The remaining amphipods (Caprella acanthifera, Ampithoe helleri and Gammarella fucicola) readily consumed both groups. In addition, SIAR modeling suggested that most species had a mixed diet, and relied on several food items. Fatty acid analysis and gut contents revealed that contributions of microepiphytic diatoms and of benthic and suspended particulate organic matter to the diet of amphipods were anecdotal. None of the examined species seemed to graze on their seagrass host [low 18:2(n‐6) and 18:3(n‐3) fatty acids contents], but Gammarus aequicauda partly relied on seagrass leaf detritus, as demonstrated by the lesser 13C‐depletion of their tissues. Overall, our findings suggest that amphipods, because of their importance in the transfer of organic matter from primary producers and detritus to higher rank consumers, are key items in P. oceanica‐associated food webs.  相似文献   

14.
Abstract

Stable isotopes of carbon (C) and nitrogen (N) were studied in 11 stream communities in the Waikato region of New Zealand. From comparisons of mean δ13C and δ15N values, food webs in the shaded, forest streams were clearly based on allochthonous material (conditioned leaf litter and terrestrial invertebrates). Autotrophs in forest streams were not a significant C source for the food webs. However, the C source of food webs in the unshaded pasture streams appeared to be a mixture of allochthonous and autochthonous material. Conditioned leaf litter appeared to contribute to the pasture stream food webs, and the δ13C and δ15N of some samples of epilithic diatoms indicated their consumption by invertebrates in pasture streams. Fish ate a wide range of aquatic invertebrates; longfinned eels (Anguilla dieffenbachii) and banded kokopu (Galaxias fasciatus) also had a large proportion of terrestrial invertebrates in their diet. Filamentous green algae were found only at pasture sites, where they were sometimes abundant. The wide range of δ13C values of filamentous green algae (‐18.8 to ‐29.7‰) complicated understanding of their role in the stream food webs. The δ13C values of Cladophora were related to water velocity, with more 13C‐enriched values in pools than in runs (‐23.2‰ in pools, mean velocity 0.12 m s?1; ‐28.1‰ in runs, mean velocity 0.24 m s?1). Crayfish and the gastropod mollusc Potamopyrgus appeared to be the only invertebrates to eat filamentous green algae.  相似文献   

15.
The faunal communities of four intertidal habitats namely sand, mud, seagrass (Zostera noltii) and seagrass patches (mixSM) of a temperate coastal lagoon, Ria Formosa (southern Portugal), were sampled. A total of 47 species were taken in 428 bottomless drop sampler samples, with the highest number of species and the more commonly occurring species belonging to the Mollusca phylum. The dominance of these gastropod species underlines the importance of the grazing food chain in these habitats. Bittium reticulatum was the most abundant species, being especially abundant in the seagrass habitat. The most frequent and highest biomass species in the community was Carcinus maenas, a predator that makes use of the available resources and that is adapted to the highly variable intertidal environment. Pomatoschistus microps was the most abundant fish species, with highest densities in the mud habitat, which demonstrates an ability to occupy a low depth area. The seagrass habitat had the highest diversity, abundance and biomass, followed by the mixSM habitat and was different from all the others. Assemblages were highly influenced by the presence of vegetation, providing forage and refuge from predation. A well defined summer group was identified in all habitats. These results highlight the importance of seagrass beds and the idea that their decrease implies the decrease of lagoon production through the impoverishment of the trophic structure of the lagoon.  相似文献   

16.
We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end of the bloom, suggesting an increased likelihood of mortality among organisms including diatoms resulting from viral infection. This is the first report on the microbial trophodynamics, including viruses, during the spring diatom bloom in the western subarctic Pacific.  相似文献   

17.
David  Mook. 《Marine Ecology》1986,7(2):105-113
Abstract. .The absorption efficiencies of the intertidal mangrove dwelling mollusk Melampus coffeus and the rocky intertidal dwelling mollusk Acanthopleura granulata were calculated by a modification of CONOVER'S (1966) equation. M. coffeus tended to consume fresh mangrove leaves indicating that M. coffeus may obtain much of its energy from the actual substrate material rather than from associated bacteria and meiofauna on decaying leaves. Obtaining energy directly from the substrate may be a mechanism for M. coffeus to utilize its food source more efficiently. In contrast, chitons (A. granulata) may utilize the higher energy components of their limited intertidal microflora! food source. Using the high energy component of a food source may be an additional mechanism by which organisms efficiently utilize a food source.  相似文献   

18.
Abstract. Feeding and movement activity patterns and the foraging behavior of the sea urchin Tripneustes ventricosus were investigated in a Thalassia testudinum seagrass bed and on a patch reef at St. Croix, U.S. Virgin Islands.
Most of T. ventricosus in the seagrass bed fed during both the day and night. Consumption of seagrass blades amounted to 1.4 g dw · individual-1· d-1 (mean sea urchin size 12.1 cm ambitus diameter). The population consumed approximately 3.6% of the daily seagrass production.
The movement of T. ventricosus was diel with high nocturnal activity levels and rates of locomotion, and little activity during daylight hours. Foraging activity was reduced under turbulent conditions. Movement rates were not governed by food availability. T. ventricosus travelled 3.7 m · d-1 on the patch reef. Individuals in the seagrass bed moved 8.8 m · d-1, most of which was accomplished during the night. The area traversed contained more than one hundred times the amount of food consumed daily. It is assumed that this behavior requires high energy expenditures for locomotion, thus yielding a low net energy profit from feeding.
The high rate of movement in seagrass beds may represent an innate behavioral adaptation to predation by night-active helmet conchs ( Cassis spp.). Fitness optimization by T. ventricosus may have been achieved by minimizing the predation risk during night hours. In an evolutionary context, survival by means of an increased energy expenditure for locomotion may compensate for the lower net energy gain from foraging.  相似文献   

19.
INTRODUCTIONMicro organismsthatinhabittheintersticesandundersideofseaiceareexposedtowidevariationsofsalinity ,particularlyduringthe periodsofbrinedrainageandicemelting(Horner ,1 977;GrantandHorner ,1 976 ) .Althoughtheamountsofmarineorganisminseaicearelowerdurin…  相似文献   

20.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号