首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary In a modification of the distributed hydrological model, LISFLOOD-WB, a two-source canopy scheme is used to predict both the canopy transpiration and soil evaporation. A revised soil storage capacity curve from the Xinanjiang model is applied to take into account the sub-grid heterogeneity. The modified model is used to estimate the long-term (1980–1997) water budget of the Lushi basin (4423 km2), China. All the input data fields are integrated in a four-dimensional GIS data structure with a raster grid spacing of 1-km. The basin channel network is determined from digital elevation data, and the spatial pattern of canopy leaf area index (LAI) is retrieved from NOAA/AVHRR NDVI images. Generally, the model efficiency for discharge prediction is acceptable, but the discharges are overestimated in the driest years and underestimated in the wettest years. The results indicated that the influence of inter-annual variation of spatial patterns of LAI detected by NOAA/AVHRR NDVI on the estimates of annual evapotranspiration is negligible. Annually averaged ratios of overland flow, infiltration and canopy interception to precipitation are 24±7%, 56±10% and 20±2%, respectively. The inter-annual variations of precipitation and predicted evapotranspiration are relatively high with standard deviations of 5.1 mm day−1 and 2.4 mm day−1, respectively, whereas the inter-annual variation of the net radiation is much less. Monthly temporal patterns of soil moisture follow precipitation strongly. Spatially precipitation and LAI are both significantly correlated with evapotranspiration, although precipitation has a slightly more dominant control. The linear relationship between water yield and LAI is weak on a grid by grid basis.  相似文献   

2.
Summary In this study, we explore the idea of harvesting cloud water in mountainous areas of the drought prone Cape Verde Islands as a year-round fresh water resource based on three cloud water collection experiments in the islands. Cloud water was collected by impaction on a commercially available, plastic, agricultural shade cloth at Serra Malagueta, Santiago, and at Monte Verde, São Vicente. This shade screen possesses superior properties to other reported materials for cloud water collection, including an impact-efficient mesh shape, high tensile strength and durability, tear resistance, and excellent water drainage characteristics. Collection efficiency of monofilament knitted shade screen varied with the mesh density (50% or 70% shading) and height of the screens, but for Monte Verde all screens above 3 m collected greater than 6 lm–2 day–1 on average for 315 days of measurement. Dry season collection for the most effective panel, a double layer of 50% shading screen, ranged from 1.3 lm–2 day–1 in December, 1988, to 7.8 and 7.7 lm–2 day–1 in November and April, 1988 respectively. Based on these measurements, we discuss a logical next phase for implementation of a large scale cloud water catchment system.With 3 Figures  相似文献   

3.
Sea-surface stress measurements were made from a rigid tower in shallow water near San Diego, California, by both the direct covariance and inertial dissipation techniques. Stress estimates from the dissipation technique were generally higher than the directly measured values, with average drag coefficients of 0.99 x 10-3 and 0.77 x 10-3, respectively, for 8-m wind speeds of 5 to 7 m s-1. In the inertial subrange, ratios of vertical to streamwise velocity spectra averaged 1.06 ± 0.16, significantly less than the isotropic value of 4/3 observed over land, suggesting that turbulence over water may be altered by the presence of waves.  相似文献   

4.
Characterization of Coherent structures in the Atmospheric Surface Layer   总被引:3,自引:2,他引:3  
The ramplike coherent structures, observed in the temporal series of temperature and humidity in the atmospheric surface layer, are analyzed using the intermittency function and the wavelet transforms, with Haar, D4 and Mexican Hat functions as mother wavelets, in order to find the most efficient conditional sampling technique. It was found that the intermittency function and the wavelet transform, using Mexican Hat as mother wavelet, are the only ones that sample structures that fulfill the ramplike coherent structures definition of a slow rise followed by a sudden drop in the temporal series. The conditionally averaged structures detected by both techniques were similar for temperature, humidity, and vertical velocity at heights of 3, 5, and 9.4 m. Significant discrepancies were found among the conditional averaged structures detected by both techniques for zonal and meridional components of the wind at 11.5 m. Considering both techniques, it was observed that the averagedcoherent-structure duration ranged from 23.7 ± 0.5 s to 37.8 ± 3.0 s. Furthermore, the averaged number of events per 20-minute period ranged from 20.0 ± 1.0 to 28.5 ± 1.1, and the averaged intermittency factor from 45.0 ± 0.4% to 59.1 ± 1.3%. It was also observed that the averaged duration of the ramplike coherent structures increases with height, while their intensity, number, and intermittency factor decrease. Despite the good matching obtained for temperature and humidity, the coherent-structure properties did not show the expected variation with wind speed, stability parameter, and friction velocity. The Kolmogorov–Smirnov test indicated that the intermittent function and the wavelet transform did not detect coherent structures belonging to the same population.  相似文献   

5.
A cryogenic system for the airborne and ground based sampling of ambient radicals by matrix isolation is described. The trapped radicals, e.g., NO2 and RO2, are analyzed by ESR. The technique has been improved, mainly by addition of water vapor to the sampled air, to yield a collection efficiency of (90±10)% and a lower detection limit of about 20 ppt, but it still does not distinguish between the different RO2. Careful calibration reduced the measurement error (1 ) to ±10% for NO2 and ±15% for HO2. Two diurnal variations of RO2 and NO2 at ground level and vertical profiles in the lower troposphere are presented.  相似文献   

6.
Henry's law constantsK H (mol kg–1 atm–1) have been determined at 298.15 K for the following organic acids: formic acid (5.53±0.27×103); acetic acid (5.50±0.29×103); propionic acid (5.71±0.34×103);n-butyric acid (4.73±0.18×103); isobutyric acid (1.13±0.12×103); isovaleric acid (1.20±0.11×103) and neovaleric acid (0.353±0.04×103). They have also been determined fromT=278.15 K toT=308.15 K forn-valeric acid (ln(K H)=–14.3371+6582.96/T);n-caproic acid (ln(K H)=–13.9424+6303.73/T) and pyruvic acid (ln(K H)=–4.41706+5087.92/T). The influence of 9 salts on the solubility of pyruvic acid at 298.15 K has been measured. Pyruvic acid is soluble enough to partition strongly into aqueous atmospheric aerosols. Other acids require around 1 g of liquid water m–3 (typical of clouds) to partition significantly into the aqueous phase. The degree of partitioning is sensitive to temperature. Considering solubility and dissociation (to formate) alone, the ratio of formic acid to acetic acid in liquid water in the atmosphere (at equilibrium with the gas phase acids) is expected to increase with rising pH, but show little variation with temperature.  相似文献   

7.
Vapor phase concentrations of acetone, acetaldehyde and acetonitrile over their aqueous solutions were measured to determine Henry's law partition coefficients for these compounds in the temperature range 5–40 °C. The results are for acetone: ln(H 1/atm)=–(5286±100)T+(18.4±0.3); acetaldehyde: ln(H 1/atm)=–(5671±22)/T+(20.4±0.1); and acetonitrile: ln(H 1/atm)=–(4106±101)/T+(13.8±0.3). Artificial seawater of 3.5% salinity in place of deiionized water raisesH 1 by about 15%. A similar technique has been used to measure the equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite in aqueous solution. The results are ln(K 1/M –1)=(4972±318)/T–(11.2±1.1) and ln(K 1/M –1)=(6240±427)/T–(8.1±1.3), respectively. The results are compared and partly combined with other data in the literature to provide an average representation.  相似文献   

8.
Two fog water collection systems (FWCS) have been implemented in South Africa. Both are located in areas where communities experience acute water shortages but which are prone to frequent fog episodes. The first was located at a high elevation site at the Tshanowa Junior Primary (JP) School in the Soutpansberg located in the Northern Province and the other near a small rural community at Lepelfontein along the West Coast. The former represents a mountainous site, while the latter is located on a low level coastal plain. The principal aim of the projects was to implement operational FWCSs to supply the communities with water. During the period 1999 to 2001 the total recorded cloud water yields at the Tshanowa JP School and Lepelfontein water collection sites were in the region of 72 422 and 148 691 l, respectively. This is equivalent to just over 2 l m−2 day−1 at the Tshanowa JP School and 4.6 l m−2 day−1 at the Lepelfontein site. Despite the relatively low average daily yields recorded, the total water volume collected on a particular day may be considerable. In fact, at both sites the maximum daily yield exceeded 3800 l. Fog deposition accounted for around 25% and 88% of the total water yield measured at the Tshanowa JP School and Lepelfontein sites, respectively. Both experiments indicated that fog water collection holds considerable potential as an alternative water source in the mountainous regions and along the West Coast of South Africa.  相似文献   

9.
A combined study of the OH gas phase reaction and uptake on aqueous surfacesof two carbonates, dimethyl and diethyl carbonate has been carried out todetermine the atmospheric lifetimes of these compounds. Rate coefficients havebeen measured for gas phase reactions of OH radicals with dimethyl and diethylcarbonate. The experiments were carried out using pulsed laser photolysis– laser induced fluorescence over the temperature range 263–372K and the kinetic data were used to derive the following Arrhenius expressions(in units of cm3 molecule–1 s–1):for dimethyl carbonate, k1 = (0.83±0.27)×10–12 exp [–(247± 98)/T] and fordiethyl carbonate, k2 = (0.46±0.15)×10–12 exp [(503± 203)/T]. At 298 K, therate coefficients obtained (in units of 10–12 cm3molecule–1 s–1) are: k1 =(0.35± 0.04) and k2 = (2.31± 0.29). The results arediscussed in terms of structure-activity relationships.The uptake coefficients of both carbonates on aqueous surfaces were measuredas a function of temperature and composition of the liquid phase, using thedroplet train technique coupled to a mass spectrometric detection. Dimethyland diethyl carbonate show very similar results. For both carbonates, themeasured uptake kinetics were found to be independent of the aqueous phasecomposition (pure water, NaOH solutions) but dependent on gas-liquid contacttime which characterises a surface saturation effect. The uptake coefficientvalues show a slight negative temperature dependence for both carbonates.These values vary from 1.4×10–2 to0.6×10–2 in the temperature range of 265–279 Kfor dimethyl carbonate, from 2.4×10–2 to0.9×10–2 in the temperature range of 270–279 Kfor diethyl carbonate. From the kinetic data, the following Henry's lawconstants were derived between 279 and 265 K: dimethyl carbonate,H1 = 20–106 M atm–1; and diethyl carbonate,H2 = 30–98 M atm–1. The reported data showthat the OH reaction is the major atmospheric loss process of these twocarbonates with lifetimes of 33 and 5 days, respectively, while the wetdeposition is a negligible process.  相似文献   

10.
Henry's law constants KH (mol kg-1 atm-1) have been measured between 278.15 K and 308.15 K for the following organic acids: CH2FCOOH (ln(KH[298.15 K]) = 11.3 ± 0.2), CH2ClCOOH (11.59 ± 0.14), CH2BrCOOH (11.94 ± 0.21), CHF2COOH (10.32 ± 0.10), CHCl2COOH (11.69 ± 0.11), CHBr2COOH (12.33 ± 0.29), CBr3COOH (12.61 ± 0.21), and CClF2COOH (10.11 ± 0.12). The variation of KH with temperature was determined for all acids except CH2FCOOH and CBr3COOH, with r H° for the dissolution reaction ranging from –85.2 ± 2.6 to –57.1 ± 2.5 kJ mol-1, meaning that their solubility is generally more sensitive to temperature than is the case for the simple carboxylic acids. The Henry's law constants show consistent trends with halogen substitution and, together with their high solubility compared to the parent (acetic) acid (ln(KH[298.15 K]) = 8.61), present a severe test of current predictive models based upon molecular structure. The solubility of haloacetic acids and strong dissociation at normal pH mean that they will partition almost entirely into cloud and fog in the atmosphere (0.05–1.0 g H2O m-3), but can reside in both phases for the liquid water contents typical of aerosols (10-5-10-4 g H2O m-3).  相似文献   

11.
Measurements of NO2, HCHO, and H2O2 were made by the highly specific method of mid infra-red absorption spectroscopy using tunable diode lasers (TDLAS) during the 1988 Polarstern expedition. The TDLAS data are compared to those obtained during the cruise using less direct methods. Southern Hemisphere NO2 levels suggest nett photochemical destruction of O3 in the boundary layer. Northern Hemisphere HCHO averaged 0.47±0.2 ppbv; the HCHO measurements are used in a simple calculation to estimate OH noontime maxima of 3–6×106 cm-3.  相似文献   

12.
Fog collection in the western Mediterranean basin (Valencia region, Spain)   总被引:1,自引:0,他引:1  
Four different mountainous locations were selected in the Valencia region, East coast of the Iberian Peninsula, for fog water collection studies. Data for 2004 were obtained by means of an instrument ensemble consisting essentially of a passive cylindrical fog water collector, a raingauge, a wind direction and velocity sensor and a temperature and humidity probe. An approximate data reduction technique was also found for this specific ensemble to eliminate the simultaneous rain water component from the fog water measurements. Main results indicate that fog water collection holds significant potential in this region, and especially for southern locations. Annual rates of fog water yield can be as high as 7.0 l/m2/day in the southern locations, in contrast to 2.0 l/m2/day collected at one site in a northern location. The highest summer fog water yield was 4.6 l/m2/day, a relatively large value. Except for the summer period, fog episodes delivering sizeable water volumes are inherently coupled to rainfall. Hourly frequencies of fog collection were also examined to show a distinct daily cycle in summer, denoting orographic fog formation during this period. Lastly, winds were analysed to resolve the most suitable directions for fog collector alignment.  相似文献   

13.
Dew and rain water collection in the Dalmatian Coast, Croatia   总被引:1,自引:0,他引:1  
Passive dew harvesting and rainwater collection requires a very small financial investment but can exploit a free, clean (outside urban/industrial zones) and inexhaustible source of water. This study investigates the relative contributions of dew and rain water in the Mediterranean Dalmatian coast and islands of Croatia, with emphasis on the dry summer season. In addition, we evaluate the utility of transforming abandoned roof rain collectors (“impluviums”) to collect dew water too. Two sites were chosen, an exposed open site on the coast favourable to dew formation (Zadar) and a less favourable site in a cirque of mountains in Komiža (Vis Island). Between July 1, 2003 and October 31, 2006, dew was collected two or three times per day on a 1 m2 inclined (30°) test dew condenser, together with standard meteorological data (air temperature and relative humidity, cloud cover, windspeed and direction). Maximum yields were 0.41 mm in Zadar and 0.6 mm in Komiža. The mean yearly cumulative dew yields were found to be 20 mm (Zadar) and 9.3 mm (Komiža). Because of its physical setting, Komiža represents a poor location for dew collection. However, during the dry season (May to October), monthly cumulative dew water yield can represent up to 38% of water collected by rainfall. In both July 2003 and 2006, dew water represented about 120% of the monthly cumulative rain water. Refurbishing the abandoned impluviums to permit dew collection could then provide useful supplementary water, especially during the dry season. As an example, the 1300 m2 impluvium at Podšpilje near Komiža could provide, in addition to rain water, 14,000 L dew water per year.  相似文献   

14.
The effect of temperature on the solubility of PAN and on its hydrolysis rate in near-neutral and slightly acidic water were studied in a bubble column apparatus. The results obtained are a Henry's law coefficient H=10–9.04±0.6 exp[(6513±376)/T] M atm–1, and a first-order hydrolysis rate constant k=106.60±1.0 exp[(–6612±662)/T] s-1, which was independent of pH in the range 3.2pH6.7. The products formed are nitrite and nitrate in approximately equal proportions under near-neutral conditions. At a pH<4, nitrite is oxidized in a secondary reaction, and nitrate becomes the only product at low pH. Previously measured deposition velocities of PAN on stagnant water surfaces are shown to be hydrolysis rate limited.  相似文献   

15.
Rate coefficients have been measured for the reactions of hydroxyl radicals with a range of aliphatic ethers by a competitive technique. Mixtures of synthetic air containing a few ppm of nitrous acid, isobutene and an ether were photolyzed in a Teflon-bag smog chamber. From the rates of depletion of the ether and of the isobutene, and based on the value of the rate coefficient k(OH+i-C4H8)=5.26×10-11 cm3 molecule-1 s-1, the following rate coefficients were obtained for the hydroxyl radical reactions at 750 Torr and at 294±2K in units of 10-12 cm3 molecule-1 s-1: diethylether = 12.0±1.1, di-n-propylether = 15.3±1.6, di-n-butylether=17.1±0.9, ethyl n-butylether = 13.5±0.4, ethyl t-butyl-ether = 5.6±0.5, and di-isobutylether = 26.1±1.6. The quoted error limits correspond to 2 standard deviations but do not include any contribution from k(OH+i-C4H8) for which the error limits are estimated to be about ±10%. The results are discussed in relation to the available literature data and considered in terms of the structure-activity relation for hydroxyl radical reactions with organic molecules.  相似文献   

16.
Summary The effectiveness of crop residues to protect the soil surface and reduce soil erosion decreases as residues decompose. The rate of residue decomposition is directly related to the temperature and moisture regimes of the residues. Predicting changes in residue mass, orientation, and soil cover requires the use of functions that relate changes in decomposition rates to changes in the temperature and water regimes. Temperature and water functions used in the residue decomposition submodel of the Wind Erosion Prediction System (WEPS) were evaluated for their effects on predictions of residue decomposition. A precipitation function (PC) was found to produce relatively more accurate estimates of decomposition than a near surface soil water content function (SWC) for describing water regime effects. The estimated accuracies of the two functions were similar when bias in the estimation was considered. Predictions made with PC had estimated accuracies of ± 11.4, 14.5, 13.5% for alfalfa, sorghum and wheat, respectively, while those made with SWC had estimated accuracies of ± 13.8, 16.2, and 16.9%, respectively. Three temperature functions were compared for use in predicting residue decomposition over a range of locations and crops. There was little difference between the temperature functions over all the locations but, for several locations, one function overpredicted decomposition more often than the other two functions. Accuracies ranged from ±4 to ±51% of the observed values. The highest values were obtained at one location, and all three temperature functions produced similar high values. Over most of the data, estimated accuracies were generally between ± 15 and ± 25%. The prediction intervals were similar to those observed for decomposition of surface-placed residues. This evaluation indicates that the temperature and water functions used in the WEPS decomposition submodel will give reasonable estimates of mass loss from surface residues using easy-to-obtain weather data.With 8 Figures  相似文献   

17.
An analytical error analysis of profile-derived fluxes of heat, moisture, and momentum, along with stability and roughness length, is performed using the accuracies of the constituent temperature, humidity, and wind speed measurements. Five experiments, representing more than two thirds of the existing marine profile data presently contained in the literature, are compared. Much of the profile data examined was used to develop the transfer coefficients presently employed by a large number of competing bulk aerodynamic flux schemes. Depending upon the experiment, typical profile-method measurement errors were found to range from 15 to 35% for a sensible heat flux of ± 10 W m-2, from 15 to 105% for a latent heat flux of ± 100 W m-2, from 10 to 40% for a stress of 0.05 N m-2, from 15 to 60% for a Monin-Obukhov stability of ± 0.05, and from 25 to 100% for a roughness length of 2 × 10-4 m. Smaller magnitude flux values were found to contain typical errors as large as 100% for sensible heat flux, 300% for latent heat flux, and 60% for stress.  相似文献   

18.
The 1,4-hydroxycarbonyl 5-hydroxy-2-pentanone is an important product of the gas-phase reaction of OH radicals with n-pentane in the presence of NO. We have used a relative rate method with 4-methyl-2-pentanone as the reference compound to measure the rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K. The carbonyls were sampled by on-fiber derivatization using a Solid Phase Micro Extraction (SPME) fiber coated with O> -(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride with subsequent thermal desorption of the oxime derivatives and quantification by gas chromatography with flame ionization detection. For comparison, the reference compound was also analyzed following sample collection onto a Tenax adsorbent cartridge. Products of the reaction were investigated using coated-fiber SPME sampling with gas chromatography-mass spectrometry analysis as well as by using in situ atmospheric pressure ionization mass spectrometry. A rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone of (1.6 ± 0.4) × 10–11 cm3 molecule–1 s–1 was obtained at 296 ± 2 K. Two dicarbonyl products, of molecular weight 86 and 100, were observed and are attributed to CH3C(O)CH2CHO and CH3C(O)CH2CH2CHO, respectively. Reaction schemes leading to these products are presented.  相似文献   

19.
Fog has been studied in the Atacama Desert of Chile for the past ten years. This paper analyzes its temporal and spatial variability, relying in part on satellite images (GOES) to analyze the frequent orographic fog and the low cloud deck (stratocumulus, Sc) that generates advective fog in the area. Fog water fluxes were measured with Standard Fog Collectors (SFC). Field trips and observers provided information on cloud top and base and the presence of fog. Vegetation in fog oases were used to confirm the results of these surveys.The Sc moves onshore into the continent with different intensities depending on season and time of day. The maximum spatial extent occurs during winter and at night. Fog is frequent in the coastal cliffs, where fog water fluxes of 7.0 L m− 2 day− 1 were measured using a SFC. It is less frequent 12 km inland, where the collection rates were less than 1 L m− 2 day− 1. The height of the fog collector above the ground affected the collection rate. The highest fog water fluxes were recorded at Alto Patache at altitudes of between 750 and 850 m a.s.l. The growth or thickness of the cloud is important in the collection of fog water. The information that GOES provides on the altitude of the top of low clouds is used to analyze this factor. Fog oases are described and analyzed in relation to how the geographical location of fog influences the growth of vegetation.  相似文献   

20.
Tropospheric concentrations of methane in remote locations have averaged a yearly world-wide increase of 0.018±0.002 parts per million by volume (ppmv) during the period from January 1978 to December 1983. The concentrations in the north temperate zone are always greater than those in the south temperate zone by 7±1% because the major methane sources are all predominantly located in the northern hemisphere. The average world-wide tropospheric concentration of methane in dry air was 1.625 ppmv at the end of 1983, measured against an NBS standard certified as 0.97 ppmv (but with an accuracy of only ±1%). The world-wide concentration increases are described by a linear equation with a standard deviation of 0.003 ppmv for ten different collection periods during 1978–1983. The precision of measurement of the methane concentration in the atmospheric samples and in the standard was measured to be ±0.4% for each. Repetitive measurements of an air sample collected in November 1977 have shown the same concentration for six years with a standard deviation for these data of ±0.003 ppmv.The causes for the steady increase in methane concentration in the troposphere cannot be fixed with certainty from present data. Contributing causes can include increases in the source strengths from cattle and rice fields. The atmospheric concentrations of CO, CH4 and HO are all closely coupled with one another, and increased concentrations of CO and/or CH4 should cause reduced concentrations of HO, which in turn should lengthen the atmospheric lifetimes of CO and CH4.Among other physical and chemical effects, a increase of 0.18 ppmv per decade should contribute a greenhouse warming of about 0.04°C per decade. Other secondary contributions to the greenhouse effect from increases in CH4 may arise from methane-induced increases in stratospheric H2O, in tropospheric O3, and in numerous other trace species whose concentration is controlled by reaction with HO radicals.An increased CH4 source strength may result from the effect of increasing atmospheric temperatures on the known aqueous biological CH4 sources, such as swamps, and may be an added consequence of the greenhouse effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号