首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

2.
Selenium concentrations have been measured in sediment, fucoid macroalgae and macroinvertebrates from four estuaries of SW England (Yealm, Plym, Looe, Fal). Sediment concentrations ranged from about 0.4 μg g−1 in the Yealm to 1.49 μg g−1 at one site in the Plym. Concentrations in Fucus vesiculosus (0.05–0.31 μg g−1) and F. ceranoides (0.05–0.51 μg g−1) were significantly lower than corresponding concentrations in sediment but there was no correlation between algal and sediment concentrations. Selenium concentrations in Littorina littorea (∼4 μg g−1), Hediste diversicolor (2.82–12.68 μg g−1), Arenicola marina (∼17 μg g−1) and Scrobicularia plana (1.18–6.85 μg g−1) were considerably higher than concentrations in macroalga or sediment, suggesting that Se is effectively accumulated from the diet. Although Se concentrations in some invertebrates exceed toxicity thresholds for the diet of predacious birds and fish, no specific evidence for Se toxicity exists in these estuaries.  相似文献   

3.
The State of São Paulo is the most developed area in Brazil and was impacted by persistent organic pollutants for several decades. This study investigated organochlorines in five species of small cetaceans (Pontoporia blainvillei, Stenella frontalis, Sotalia guianensis, Tursiops truncatus and Steno bredanensis) found dead along the coast of São Paulo between 1997 and 2003. DDTs (15.9 μg g−1 lipid; mean for all pooled individuals) and PCBs (8.08 μg g−1) exhibited the highest concentrations in the animals, reflecting large amounts formerly used in Brazil. Lower levels of mirex (0.149 μg g−1), HCB (0.051 μg g−1), CHLs (0.008 μg g−1) and HCHs (0.007 μg g−1) were detected in all species. Residual pattern of DDTs in dolphins suggests that o,p′-DDT is more recalcitrant than p,p′-DDT in the body of the animals and/or the environment. In contrast to p,p′-DDT, residues of o,p′-DDT seem to be preferentially converted into o,p′-DDD rather than o,p′-DDE.  相似文献   

4.
Turbulence measurements in fine-scale phytoplankton layers (∼1 to ∼10 m) in the Gulf of Aqaba (Red Sea) were used to evaluate mechanisms of layer formation, maintenance, and breakdown. Simultaneous profiles of chlorophyll a (Chl a) fluorescence and temperature microstructure were measured in the upper 40 m of a 430 m water column over a 16-d period, using a Self Contained Autonomous MicroProfiler (SCAMP). Layers of concentrated phytoplankton were identified in 95 of the 456 profiles. The layers were situated in density stratified regions between 15 and 38 m depth and were characterized by intensities of 0.1 to 0.35 μg Chl a L−1 (as much as two times background concentrations) and an average thickness of 10 m. We show that turbulent mixing and isopycnal displacements associated with internal waves modulated the thickness of the layers. Variations in mixing rates within layers were connected to the vertical structure of the stratified turbulence and the stage of layer development. The breakdown of a persistent phytoplankton layer was tied to strong turbulent mixing at the base of the surface mixed layer, which encroached on the layer from above. Hydrographic observations and scaling analysis suggest that the layers most likely formed in horizontal intrusions from the adjacent coastal region. The cross-shore propagation of phytoplankton-rich intrusions may have important implications for the trophic state of offshore planktonic communities.  相似文献   

5.
This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4–4.5 μg L−1) and pharmaceuticals (0.1–0.3 μg L−1) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 μg g−1, whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 μg g−1) were measured nearest NYC, sharply decreasing with distance from major sewage inputs.  相似文献   

6.
As part of the ECOHAB: Florida Program, we studied three large blooms of the harmful bloom forming dinoflagellate Karenia brevis. These blooms formed on the West Florida Shelf during Fall of 2000 off Panama City, and during Fall 2001 and Fall 2002 off the coastline between Tampa Bay and Charlotte Harbor. We suggest that these blooms represent two different stages of development, with the 2000 and 2001 blooms in an active growth or maintenance phase and the 2002 bloom in the early bloom initiation phase. Each bloom was highly productive with vertically integrated primary production values of 0.47–0.61, 0.39–1.33 and 0.65 g C m−2 d−1 for the 2000, 2001 and 2002 K. brevis blooms, respectively. Carbon specific growth rates were low during each of these blooms with values remaining fairly uniform with depth corresponding to generation times of 3–5 days. Nitrogen assimilation by K. brevis was highest during 2001 with values ranging from 0.15 to 2.14 μmol N L−1 d−1 and lower generally for 2000 and 2002 (0.01–0.64 and 0.66–0.76 μmol N L−1 d−1 for 2000 and 2002, respectively). The highest K. brevis cell densities occurred during the 2001 bloom and ranged from 400 to 800 cells mL−1. Cell densities were lower for each of the 2000 and 2002 blooms relative to those for 2001 with densities ranging from 100 to 500 cells mL−1. The 2000 and 2001 blooms were dominated by K. brevis in terms of its contribution to the total chlorophyll a (chl a) pool with K. brevis accounting generally for >70% of the observed chl a. For those populations that were dominated by K. brevis (e.g. 2000 and 2001), phytoplankton C biomass (Cp,0) constituted <30% of the total particulate organic carbon (POC). However, in 2002 when diatoms and K. brevis each contributed about the same to the total chl a, Cp,0 was >72% of the POC. The fraction of the total chl a that could be attributed to K. brevis was most highly correlated with POC, chl a and salinity. Nitrogen assimilation rate and primary production were highly correlated with a greater correlation coefficient than all other comparisons.  相似文献   

7.
From 15 to 28 August in 2007, a Chaetoceros socialis bloom was detected in the Pearl River Estuary water with chlorophyll a concentration (Chl a) up to 30 mg m−3 and cell density up to 106 cells L−1. Time series of bio-optical measurements was obtained at a single site (114.29°E, 22.06°N) with the mooring of marine optical buoy. Light absorption properties of seawater experienced large variability throughout the algal bloom. Absorption by colored dissolved organic matter (CDOM) was one of the dominant optical components of the light absorption (30–70%) especially for pre- and post-bloom waters, and it tended to decrease with Chl a during the algal bloom. Absorption by phytoplankton was another dominant optical component (18–50%) and increased rapidly with Chl a. Phytoplankton and accompanying material played dominant roles in light absorption as indicated by the relationship between absorption coefficient and Chl a. At high pigment concentrations, water samples showed significantly lower specific phytoplankton absorption, compared with pre- and post-bloom conditions, with the specific phytoplankton concentration at 443 nm varied between 0.011 and 0.022 m2 mg−1 and that at 676 nm between 0.007 and 0.018 m2 mg−1; small values of blue-to-red ratio of phytoplankton were also observed. These lower values were associated with variations in phytoplankton size structure. Spectral variability of phytoplankton absorption and total absorption (not including the fixed background absorption by pure water itself) could be expressed as simple linear functions linking absorption at one wavelength to the absorption at the other wavelengths, with the slope of the relationship changing with wavelength. The absorption coefficients by non-algal particles and CDOM follow the general exponential functions with remarkably limited variability in the exponent with means of 0.0105 and 0.0166 nm−1, respectively. These spectral dependencies of absorption coefficients provide useful information for retrieving inherent optical properties from reflectance data in a remote-sensing context.  相似文献   

8.
Suspended particles (SP) are increasing dramatically in Bohai Bay, China and may affect the growth and composition of phytoplankton assembly. To determine the effects of SP on the growth of two dominant phytoplankton species, Phaeodactylum tricornutum Bohlin and Gymnodinium sp., we cultured and tested their growth characteristics under SP concentrations ranging from 0 g L−1 to 0.8 g L−1. Our results show that the increase in the SP concentrations results in significant decrease in the maximum cell densities and the maximum specific growth rates of these two species. The half maximal inhibitory concentration (IC50) of SP to P. tricornutum and Gymnodinium sp. were 1.07 g L−1 and 0.68 g L−1 respectively, indicating the inhibitory effect of SP on Gymnodinium sp. was greater than on P. tricornutum. These results suggest that SP inhibits the growth of the two algal species and P. tricornutum is more tolerant to SP than Gymnodinium sp.  相似文献   

9.
Low tide rainfall may represent an important but little studied process affecting sediment fluxes on intertidal mudflats. In this study, we simulated rainfall events on an intertidal mudflat (median grain size=18.4 μm) of low slope (1 in 300) then quantified effects on sediment erodibility. Treatments consisted of a high (4.1 mm min−1 for 6 min) and low (0.36 mm min−1 for 60 min) rain intensity, chosen to match naturally occurring events and experiments were conducted seasonally (May and August) to encompass variations in ambient sediment stability. Changes in bed elevation due to rainfall were estimated using marked rods and sediment erodibility parameters (mass of sediment eroded at a flow velocity of 0.3 m s−1 (ME-30, g m−2) and critical erosion velocity (Ucrit, m s−1)) were determined in annular flumes (bed area=0.17 m2). Ambient/control sediment erodibility in May (ME-30=211 g m−2, Ucrit=0.18 m s−1) was higher than in August (ME-30=30 g m−2, Ucrit=0.26 m s−1) and was correlated with changes in biological activity. In May, surface sediment was influenced by high densities of the bioturbating snail Hydrobia ulvae (1736 ind. m−2) and low biomass of the sediment stabilising microphytobenthos (5.7 μg chlorophyll a cm−2). In contrast, in August H. ulvae densities were low (52 ind. m−2) and microphytobenthic biomass higher (9.2 μg chlorophyll a cm−2). The high rain treatment caused a decrease in bed elevation of between 1.5 mm (May) and 4.4 mm (August) and significantly reduced sediment organic content and microphytobenthic biomass. Rainfall increased sediment erodibility; compared to ambient sediments ME-30 increased by a factor of 1.4× in May and 8.8× in August and caused a 10–30% decline in Ucrit. The seasonal difference in treatment effect was due to the change in ambient sediment stability. The low rain treatment in August had no effect on bed elevation, microphytobenthic biomass or sediment erodibility. In May, the same treatment caused a reduction in bed elevation (0.5 mm) and microphytobenthic biomass but counter-intuitively, a decrease in sediment erodibility (ME-30 was reduced by 40%, Ucrit increased by 5%) compared to controls. We attribute this result to removal by rainfall of easily eroded surface flocs and biogenic roughness which resulted in an underlying sediment with a smoother surface and greater resistant to erosion. Results suggest that high intensity rain events may destabilise intertidal sediments making them more susceptible to erosion by returning tidal currents and that the sediment eroded during such events may represent a considerable fraction (up to 25%) of the seasonal variation in shore elevation. The impact of natural rain events are likely to vary considerably due to variations in droplet size, intensity and duration and the interaction with ambient sediment stability.  相似文献   

10.
The river Rhine has lain under considerable anthropogenic stress of its water quality for 100 years. As early as 1905 the first results of studies of the plankton in the Rhine were published. Due to the long residence time of the water a real potamoplankton can develop and at the end of the Lower Rhine it reaches its highest density. The paper consists of two parts. At first an overview is given about the history of plankton studies in the Rhine. The second part is the presentation of results from a monitoring at the Lower Rhine from 1979 to 2004.First systematic studies started at the beginning of the 20th century at the beginning of pollution. Our studies started during a phase of recreation from extreme pollution and eutrophication. Samples were taken at four stations: Bad Honnef, km 640, entrance to North Rhine-Westphalia, Düsseldorf, km 732, Duisburg, km 792 downstream large industrial effluents and big cities, Kleve-Bimmen, km 865 at the border to the Netherlands.In the 1970s nutrients were high, especially phosphate 0.65 mg PO4-P L−1 in 1979. After 1980 phosphate dropped to 0.11 mg PO4-P L−1 in 2004 (mean values of the growing season). Ammonia was reduced from about 0.52 (1979) to 0.02 (2004) mg NH4-N L−1. Nitrate remained between 3.72 (1989) and 2.26 (2004) mg NO3-N L−1 at a relatively high level. Oxygen concentrations were very low during the 1960s and 1970s, sometimes only 4 mg L−1 O2. During our studies the oxygen increased up to 9 mg L−1 O2 with a tendency to 11 mg L−1 O2 in the last years. Chlorophyll a was estimated to be between 59 (1979) and 31μg L−1 (1986) with short peaks up to 170 μg L−1 (1989). Since 1992 the mean values have varied between 30 (1993) and 21 μg L−1 (2004).The floristic phytoplankton composition is characterised by the dominance of the centric diatom Stephanodiscus hantzschii. Other diatoms like Skeletonema subsalsum, Skeletonema potamos and Asterionella formosa were regularly present in smaller quantities. The second dominant group was coccale green algae. During the 1980s they formed up to 35% of the biomass. Since the 1990s their contribution to the phytoplankton became much smaller. This change corresponds with the increase of wastewater treatment and the diminution of nutrients. All the other groups of algae were present in minor quantities. During the time of higher trophy in the 1970s and 1980s the phytoplankton formed two peaks, in recent years only one peak has developed, depending on different flow conditions during the growing season and lower trophic state in the upstream parts of the river.Excellent correspondence exists between cell number, biovolume and chlorophyll a content and the results of delayed fluorescence (DF) measurement. The trophic status in the Lower Rhine may be estimated as (moderate) eutrophic. The ecological status of the phytoplankton is good based on the requirements of the European Water Framework Directive (WFD).The zooplankton consists mainly of rotatoria and larvs of Dreissena polymorpha. Grazing on phytoplankton seems to be mainly due to the large quantities of benthic Dreissena and the newly introduced mussel Corbicula.  相似文献   

11.
Our investigation on macrophytes in Lake Qattieneh, a large, shallow reservoir in western Syria, is a first assessment of ecological status of this lake. We studied spatial distribution patterns of aquatic macrophyte vegetation and heavy metal concentrations to determine if they can be used as indicators of point sources of pollution. Industrial and municipal point sources at the lake shore increase nutrient load and contamination by heavy metals. Water analyses revealed high concentrations of some heavy metals at some littoral sites: Ni 88.7 μg L−1, Cr 49.99 μg L−1, Co 14.38 μg L−1, and Cu 11.65 μg L−1. Despite hypertrophic conditions and high heavy metal contamination, we recorded several submerged macrophyte species with heterogeneous spatial distribution patterns. Whereas Potamogeton pectinatus L. dominates in the eastern part of the lake, near industrial point sources, both Myriophyllum spicatum L. and Potamogeton lucens L. form extended patches in the western part of the lake. The shallow, littoral areas near villages are dominated by Ranunculus trichophyllus Chaix in Villars and Ceratophyllum demersum L. The west-east gradient in nutrient and heavy metal concentrations in waters and sediments are reflected by the spatial distribution of submersed species. While the heavy metal concentrations of the water body vary considerably in different seasons, the contents in submersed macrophytes integrate seasonal variations of longer time periods. Spatial distribution and tissue accumulation of littoral macrophyte species reflect the environmental conditions at respective sites such as heavy metal contents in water and sediment.  相似文献   

12.
Sixty-eight sediment samples collected from Dongjiang River, Xijiang River, Beijiang River and Zhujiang River in the Pearl River Delta (PRD) region, Southern China, were analyzed for 16 phthalate esters (PAEs). PAEs were detected in all riverine sediments analyzed, which indicate that PAEs are ubiquitous environmental contaminants. The Σ16PAEs concentrations in riverine sediments in the PRD region ranged from 0.567 to 47.3 μg g1 dry weight (dw), with the mean and median concentrations of 5.34 μg g1 dw and 2.15 μg g1 dw, respectively. Elevated PAEs concentrations in riverine sediments in the PRD region were found in the highly urbanized and industrialized areas. Of the 16 PAEs, diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) dominated the PAEs, with the mean and median concentrations of 1.12 μg g1 dw, 0.420 μg g1 dw and 3.72 μg g1 dw, and 0.429 μg g1 dw, 0.152 μg g1 dw and 1.55 μg g1 dw, respectively, and accounted for 94.2–99.7% of the Σ16PAEs concentrations. Influenced by local sources and the properties of PAEs, a gradient trend of concentrations and a fractionation of composition from more to less industrialized and urbanized areas were discovered. As compared to the results from other studies, the riverine sediments in the PRD region were severely contaminated with PAEs. Information about PAEs contamination status and its effect on the aquatic organisms in the PRD region may deserve further attention.  相似文献   

13.
Phytoplankton biomass and primary production were monitored in the Hauraki Gulf and on the northeastern continental shelf, New Zealand - using ship surveys, moored instruments and satellite observations (1998-2001) - capturing variability across a range of space and time scales. A depth-integrated primary production model (DIM) was used to predict integrated productivity from surface parameters, enabling regional-specific estimates from satellite data. The shelf site was dominated by pico-phytoplankton, with low chlorophyll-a (<1 mg m−3) and annual production (136 g C m−2 yr−1). In contrast, the gulf contained a micro/nano-phytoplankton-dominated community, with relatively high chlorophyll-a (>1 mg m−3) and annual production (178 g C m−2 yr−1). Biomass and productivity responded to physico-chemical factors; a combination of light, critical mixing depths and/or nutrient limitation—particularly new nitrate-N. Relatively low biomass and production was observed during 1999. This coincided with inter-annual variability in the timing and extent of upwelling- and downwelling-favourable along-shelf wind-stress, influencing the fluxes of new nitrate-N to the shelf and gulf. Relationships with the Southern Oscillation Index are also discussed. Our multi-scaled sampling highlighted details associated with stratification and de-stratification events, and deep sub-surface chlorophyll-a not visible to satellite sensors. This study demonstrates the importance of multi-scaled sampling in gaining estimates of regional production and its responses to physico-chemical forcing.  相似文献   

14.
Cruises to Bering Strait and the Chukchi Sea in US waters from late June in 2002 to early September in 2004 and the Russian–American Long-term Census of the Arctic (RUSALCA) research cruise in 2004 covered all major water masses and contributed to a better understanding of the regional physics, nutrient dynamics, and biological systems. The integrated concentration of the high nitrate pool in the central Chukchi Sea was greater in this study than in previous studies, although the highest nitrate concentration (∼22 μM) in the Anadyr Water mass passing through the western side of Bering Strait was consistent with prior observations. The chlorophyll-a concentrations near the western side of the Diomede Islands ranged from 200 to 400 mg chl-a m−2 and the range in the central Chukchi Sea was 200–500 mg chl-a m−2 for the 2002–2004 Alpha Helix (HX) cruises. Chlorophyll-a concentrations for the 2004 RUSALCA cruise were lower than those from previous studies. The mean annual primary production of phytoplankton from this study, using a 13C–15N dual-isotope technique, was 55 g C m−2 for the whole Chukchi Sea and 145 g C m−2 for the plume of Anadyr–Bering Shelf Water in the central Chukchi Sea. In contrast, the averages of annual total nitrogen production were 13.9 g N m−2 (S.D.=±16.2 g N m−2) and 33.8 g N m−2 (S.D.=±14.1 g N m−2) for the Chukchi Sea and the plume, respectively. These carbon and nitrogen production rates of phytoplankton were consistently two-or three-fold lower than those from previous studies. We suggest that the lower rates in this study, and consequently more unused nitrate in the water column, were caused by lower phytoplankton biomass in the Bering Strait and the Chukchi Sea. However, we do not know if the lower rate of production from this study is a general decreasing trend or simply temporal variations in the Chukchi Sea, since temporal and geographical variations are substantially large and presently unpredictable.  相似文献   

15.
Rare earth elements (REEs) are widely used to increase crop production in China. However, little attention has been paid to their impacts on aquatic ecology. Batch cultivation was used here to study the effects of lanthanum (La) and EDTA on the growth and competition of the cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus quadricauda. When EDTA was present at a very low concentration (0.269 μmol L−1), low lanthanum concentrations (?7.2 μmol L−1) had little stimulative effect on the growth of M. aeruginosa and S. quadricauda, whereas a high lanthanum concentration (72 μmol L−1) had significant inhibitory effect on both of them. The results of cultivation experiments suggested that the inhibitory effect on M. aeruginosa was higher than that on S. quadricauda and S. quadricauda could become dominant in mixed cultures. When lanthanum was not added to the culture medium, high EDTA concentrations (>13.4 μmol L−1) had a great inhibitory effect on the growth of M. aeruginosa but little effect on the growth of S. quadricauda, which could become dominant in the mixed cultures.Lanthanum and EDTA had complex effects on the growth and competition of M. aeruginosa and S. quadricauda. EDTA did not change the stimulation of low lanthanum concentrations on both, but at intermediated concentrations (2.69-13.4 μmol L−1) it could greatly alleviate lanthanum inhibition on M. aeruginosa; thus, M. aeruginosa would dominate S. quadricauda in these mixed cultures. Lanthanum at low concentration (7.2 μmol L−1) could also alleviate the inhibition of high EDTA on M. aeruginosa, but did not alter the outcome of the competition.  相似文献   

16.
A spatial and temporal study on data collected along the longitudinal gradient of the Principal Channel of Bahía Blanca estuary, Argentina, was carried out during 1992–1993. At nine stations, phytoplankton abundance, chlorophyll a (Chl-a) concentration, inorganic nutrient levels, Secchi disk depth, euphotic depth:mixing depth ratio (Zeu:Zm), salinity and temperature were recorded. Phytoplankton abundance, Chl-a concentration and nutrient levels decreased towards the outer zone of the estuary. The inner zone (stations 1 and 2), which was characterized by high turbidity, high nutrient concentrations and high Zeu:Zm (>0.16, [critical mixing ratio]), registered the highest phytoplankton abundance and Chl-a concentrations. Temporal variability of data was also noteworthy in this zone. The highest biomass values thus corresponded to June, July, August and the beginning of spring (18 μg Chl-a L−1 and 9×106 cells L−1) concomitantly with a diatom bloom. In the middle zone (stations 3–6), a strong phytoplankton biomass decrease was observed and it coincided with both deep-mixed depths and low Zeu:Zm (<0.16). The outer zone (stations 7–9), which was characterized by low phytoplankton biomass values and low nutrient levels all along the year, was the area mostly influenced by waters from the adjacent continental shelf. In view of the above, it can be concluded that the most important primary production in the Bahía Blanca would be produced in the shallow inner zone during winter, being the spatial reach of the phytoplankton biomass principally limited to estuarine waters. Presumably, less than 5% of such biomass may reach the coastal area of the estuary.  相似文献   

17.
Oysters from the north-west coast of Canada contain high levels of cadmium, a toxic metal, in amounts that exceed food safety guidelines for international markets. A first required step to determine the sources of cadmium is to identify possible spatial and temporal trends in the accumulation of cadmium by the oyster. To meet this objective, rather than sample wild and cultured oysters of unknown age and origin, an oyster “grow-out” experiment was initiated. Cultured oyster seed was suspended in the water column up to a depth of 7 m and the oyster seed allowed to mature a period of 3 years until market size. Oysters were sampled bimonthly and at time of sampling, temperature, chlorophyll-a, turbidity and salinity were measured. Oyster total shell length, dry tissue weights, cadmium concentrations (μg g−1) and burdens (μg of cadmium oyster−1) were determined. Oyster cadmium concentrations and burdens were then interpreted with respect to the spatial and temporal sampling design as well as to the measured physio-chemical and biotic variables. When expressed as a concentration, there was a marked seasonality with concentrations being greater in winter as compared in summer; however no spatial trend was evident. When expressed as a burden which corrects for differences in tissue mass, there was no seasonality, however cadmium oyster burdens increased from south to north. Comparison of cadmium accumulation rates oyster−1 among sites indicated three locations, Webster Island, on the west side of Vancouver Island, and two within Desolation Sound, Teakerne Arm and Redonda Bay, where point sources of cadmium which are not present at all other sampling locations may be contributing to overall oyster cadmium burdens. Of the four physio-chemical factors measured only temperature and turbidity weakly correlated with tissue cadmium concentrations (r2 = −0.13; p < 0.05). By expressing oyster cadmium both as concentration and burden, regional and temporal patterns were demonstrated, which may have been missed if just concentration was determined.  相似文献   

18.
Bacterioplankton abundance (BA) and biomass (BB) from the eutrophic Pearl River Estuary (PRE) to the oligotrophic northern South China Sea (NSCS) were studied in the wet season. BA was significantly higher (p < 0.05) in PRE (12.51 ± 3.52 × 108 cells L−1), than in the continental shelf neritic province (CSNP, 4.95 ± 2.21 × 108 cells L−1) and in the deep oceanic province (OP, 3.16 ± 1.56 × 108 cells L−1). Nutrient-replete PRE waters (DIN > 100 μM and PO4 > 1 μM) resulted in high chl a and BB, whereas nutrient-depleted offshore waters (DIN <5 μM and PO4 < 0.5 μM) had low biomass. Temperature (>26 °C) was not the controlling factor of BA. BB was significantly correlated with chl a biomass both in PRE and NSCS. The bacteria to phytoplankton biomass (BB/PB) ratio increased clearly along the gradient from near-shore PRE (0.15) to offshore CSNP (0.93) and deep OP (2.75), indicating the important role of small cells in the open ocean compared to estuarine and coastal zones.  相似文献   

19.
We investigated the spatial distribution and composition of microbenthos in the seafloor sediments from 48 stations in the Yellow Sea using epifluorescence microscopy and quantitative protargol staining techniques. The bacterial abundance ranged from 2.4×108 to 1.9×109 cells cm−3 in the wet sediment, about three orders of magnitude higher than that of phototrophic (PNFs, from 6.4×105 to 8.8×106 cells cm−3) and heterotrophic nanoflagellates (HNFs, from 5.8×104 to 5.9×106 cells cm−3) and four orders of magnitude higher than that of cyanobacteria (from 2.3×104 to 2.3×106 cells cm−3) in the upper 5 cm of sediments. The abundance of diatoms varied greatly, from 3-1.1×105 cells cm−3 in the upper 8 cm of sediments, whereas those of heterotrophic microflagellates (HMFs, 1-182 cells cm−3) and ciliates (1-221 cells cm−3) were less varied and lower. The biomass partitioning indicates the primary importance of benthic bacteria (50.3 μg C cm−3 on average), followed by PNFs (40.7 μg C cm−3), HNFs (19.3 μg C cm−3), and finally by cyanobacteria (8.8 μg C cm−3). Benthic diatoms (0.8 μg C cm−3), ciliates (0.15 μg C cm−3), and HMFs (0.03 μg C cm−3) contribute relatively small fractions to the total biomass of the microbenthos. About 95% of diatoms, 77% of ciliates, and 56% of HMFs were distributed in the upper 2 cm of sediments, whereas no distinct vertical distributions were observed for bacteria, cyanobacteria, PNFs, and HNFs. The microbenthos are quantitatively important in the shallow seafloor, wherein their main components have an average abundance three orders of magnitude higher than the corresponding planktonic organisms in the same sea area. Our estimates indicate that pico-sized phytobenthos might contribute a large proportion to the primary production. Benthic ciliates and heterotrophic flagellates contribute about 90% to the estimated combined metabolic rate of micro- and meiobenthic consumers in the whole sea area, with nanoheterotrophs accounting for the majority. The data suggest the potential for the rapid primary and secondary production of microbenthos and detrital utilization in the shallow seafloor sediments of the Yellow Sea.  相似文献   

20.
The zooplankton of oligotrophic lakes in North Patagonia is often dominated by mixotrophic ciliates, particularly Stentor amethystinus and Stentor araucanus. Therefore, we tested whether Stentor spp. (i) is an important food for juvenile endemic (Cheirodon australe, Galaxias maculatus, Odontesthes mauleanum, Percichthys trucha) and introduced (Oncorhynchus mykiss) fish species, and (ii) represents a remarkable grazer of bacteria. Ingestion rates of fish estimated by disappearance of Stentor in feeding experiments ranged between 8 (G. maculatus) and 53 (C. australe) ciliates per fish and day, and assimilation rates measured by using radioactively labelled Stentor ranged between 3 (P. trucha) and 52 (C. australe) ciliates per fish and day. However, although we detected the consumption of Stentor by fish, the daily consumption amounted to at most 0.2% of the fish biomass which can not cover the energy requirement of the fish. Furthermore, the daily consumption was equivalent to a maximum of 1.6% of the Stentor standing stock so that fish predation does not seem to be an important mortality factor for the ciliates. The clearance rate of Stentor sp. on natural bacteria was on average 3.8 μl cil−1 h−1. The daily ingestion (mean 3.9 ng C cil−1 d−1) was about 3.5% of the individual biomass of Stentor sp. Therefore, bacteria ingestion might explain a ciliate growth rate of appr. 1% d−1, which was about 17% of the photosynthesis of endosymbiotic algae. The maximum density of Stentor sp. in the lake could ingest about 1 μg C L−1 d−1 bacteria which is only 3% of average bacterial production. Thus, grazing by Stentor sp. does not seem to be a main loss factor for the bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号