首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological risk assessment is of great significance to promoting the rational management effectively for the oil‐polluted areas. A comprehensive evaluation method of ecological risk, including probabilistic risk assessment and regional ecological risk assessment, is developed through employing the contaminant benzo[a]pyrene as an indicator to assess ecological risk of five oil mining plots, respectively in Yellow River Delta. In this study, firstly we evaluate the ecological risk probability of five oil mining plots using overlapping area of probabilistic curves, and the results show that local ecological risk varies between the maximum 0.4 and the minimum 0.01. Then we overlay boundaries of five administrative divisions in Yellow River Delta and the spatial distribution patterns of ecosystems to generate new risk receptor plaques, and calculate the integrated value of 30 specifically classified plaques for comprehensive evaluation of ecological risk. The results, fluctuating within the range of 0.00005 and 0.25, indicate that local government should be vigilant to ecological risk of benzo[a]pyrene to some extent, although the current situation is not severe in whole.  相似文献   

2.

本文对黄河三角洲Z07孔沉积物进行了系统的磁性地层学和环境磁学研究.通过结合沉积速率和古地磁长期变化数据,我们为该孔建立了较为精确可信的年代框架(1999-03-2006-06 A.D.).环境磁学结果表明黄河三角洲沉积物与中国黄土的磁学特征相似,主要载磁矿物为单畴(SD)磁铁矿,超顺磁颗粒(SP)含量也较高.整体上,该孔沉积物磁学参数的变化主要受粒度和含量控制.岩芯磁性参数在2003年前后发生了系统变化.我们认为,黄河自2002年起进行调水调沙工程,黄河下游河道冲刷加剧,形成新的物质来源,河流输入的沉积物粒度变粗,输沙量增加,这一新的物质来源是造成Z07钻孔磁性参数发生显著变化的主因.

  相似文献   

3.
PAH concentrations of 61 surface soil samples collected from the Yellow River Delta (YRD), China were measured to determine occurrence levels, sources, and potential toxicological significance of PAHs. The total concentrations of ∑PAHs ranged from 27 to 753 ng/g d.w., with a mean of 118 ± 132 ng/g. The highest concentrations was found in the mid-southern part of the YRD (753 ng/g), which was associated with the oil exploration. The ratios indicated that the PAHs throughout the YRD were mostly of pyrogenic origin; while various sites in mid-southern part in the region were derived mainly from the petrogenic sources. Multivariate statistical analyses supported that the PAHs in surface soils of the YRD were principally from the coal and biomass combustion, petroleum spills, and/or vehicular emissions. The toxic assessment suggested that the PAHs in soils were at low potential of ecotoxicological contamination level for the YRD.  相似文献   

4.
This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills.  相似文献   

5.
The flood season is the main period of flow,sediment transport,and sedimentation in the lower Yellow River(LYR).Within the flood season,most of the flow,sediment transport,and sedimentation occurs during flood events.Because of the importance of floods in forming riverbeds in the LYR,the regularity of sediment transport and sedimentation during floods in the LYR was studied.Measured daily discharge and sediment transport rate data for the LYR from 1960 to 2006 were used.A total of 299 floods wer...  相似文献   

6.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Research on land use/land cover changes (LUCC)has been the core project of the Global EnvironmentalChanges since the 1990s[1—6]. Scientists at home andabroad have been laying emphasis on integrationstudies on land-use change by “space and process”features[7—10] as researches on LUCC are in a greatdeal. It is of paramount important for us to studyLUCC at various spatial-temporal scales and build aquantitative assessment of land-use conversion by in-tegrated spatial-temporal features. …  相似文献   

9.
Extensive agricultural,industrial and urban development in the Yellow River,China,have modified the sediment-water balance,flow and inundation regimes,longitudinal connectivity,integrity of riparian vegetation,and water quality.Macroinvertebrate assemblages in the bed sediment of main channel and major reservoirs of the Yellow River are described in detail for the first time.A total of 74 taxa comprising 17 taxa of oligochaetes,48 taxa of aquatic insects,5 taxa of molluscs,and 4 taxa of other animals were recorded.A range of feeding guilds were represented,including, collector-gatherers(32 taxa),predators(17 taxa),scrapers(16 taxa),shredders(6 taxa)and collector-filterers(2 taxa).Both the mean density and biomass of macroinvertebrates were significantly higher in sites located in the artificial reservoirs compared with the main river channel. Assemblages varied spatially;Oligochaetes dominated assemblages in upper reaches,insects dominated in middle reaches and other animals(e.g.Crustacea)dominated in lower reaches. Collector-gatherers were dominant throughout the entire river.Classification analysis identified five site-groups on the basis of macroinvertebrate presence/absence:downstream of reservoirs;vegetated sites;reservoir sites;polluted sites,and;lower-reach sites.Lower macroinvertebrate richness,density and biomass,compared with other similar large rivers,were attributed to modification of the sediment-water balance and associated disturbance of benthic habitats.Pollution,stability of sediment and sediment concentration combined to influence the distribution of macroinvertebrates.This knowledge will substantially benefit the recent focus on the health and environmental water requirements of the Yellow River.  相似文献   

10.
The occurrence and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in waters at the eight riverine outlets of the Pearl River Delta (China) were examined based on a monthly sampling program from March 2005 to February 2006. The total concentrations of PAHs in the aqueous phase and suspended particulate matter (SPM) combined ranged from 55.5 to 522 ng/L, at the mid level of the global values in rivers and estuaries. No clear temporal and spatial trends of PAH concentrations were found. However, the concentrations of PAHs associated with SPM coincided with the monthly precipitation of Guangzhou, indicating the importance of atmospheric deposition. The PAHs found in the region were likely derived from a combined pyrolytic and petrogenic origin, as suggested by the molecular indices of PAHs. Normalized partition coefficient (K(oc)) between water and SPM was correlated with octanol-water partition coefficient (K(ow)) to understand the environmental behavior of PAHs.  相似文献   

11.
12.
This paper evaluates the applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang et al., and van Rijn, together with the Wuhan methods developed in China, to the Yellow River, which has highly concentrated and fine-grained sediment. The sediment data includes over 1000 observations from the Yellow River, 32 sets of data from a canal, and 266 sets of data from laboratory flumes. The best predictions were obtained by the Yang 1996 method, the Wuhan method, and the modified Wuhan method by Wu and Long, while reasonably good predictions were also provided by the van Rijn 2004 method. The Engelund and Hansen, the Ackers and White, and the van Rijn 1984 methods in their original forms are not applicable to the Yellow River. The predicted results for total load concentrations were as good as for bed-material concentrations, even though the total load includes a large portion of wash load.  相似文献   

13.
The annual changes of sediment deposition-scour on the riverbed in the Sanhuhekou-Toudaoguai Reach of the upper Yellow River during the years 1952-2010 were investigated based on runoff and sediment transport observations from the Sanhuhekou and Toudaoguai hydrological stations. Multiple influencing factors such as reservoir operations, tributary inflows, as well as runoff and sediment loads from the Shidakongdui area were analyzed. The results show that even though the sediment loads from the major sources, the Shidakongdui area as well as the upstream tributaries such as the Qingshui River and the Zuli River have reduced especially since the 2000 s as a result of enhanced water-soil conservation measures and improvement of vegetation cover, the study reach was still generally in a status of cumulative aggradation. This is mainly due to the joint operations of the Liujiaxia Reservoir and the Longyangxia Reservoir, which significantly reduced the annual runoff and sediment loads at the Sanhuhekou Crosssection. The reservoirs also remarkably altered the summer flood characteristics of the study reach, inducing the shape of the annual flow curve changing from a 'single-peak' into a 'doublepeak'. These alternations sharply decreased the sediment transport capacity of flooding in the summer flood season which yields more than 90% of the sediment loads, leading to an unbalanced relation between the water and sediment. In addition, the estimated incoming sediment coefficient of the Sanhuhekou Crosssection ranged from 0.003 to 0.014 kg s/m~6, of which 0.004 kg s/m~6 was suggested as a rough critical value to determine the scour or deposition status of the study reach.  相似文献   

14.
桥梁是生命线工程的重要组成部分,对桥梁作出符合实际的震害预测意义重大。以胜利黄河公路大桥为例,介绍了经验统计法、规范校核法、Push-over方法、大跨度桥梁定性和定量分析等桥梁震害预测方法。分别用Push-over(推倒分析)法和大跨度桥梁定性与定量相结合的震害预测方法对胜利黄河公路大桥进行了震害预测评价。  相似文献   

15.
The levels and distribution of tris-(2,3-dibromopropyl) isocyanurate (TBC) and hexabromocyclododecanes (HBCDs) of surface sediments in the Yellow River Delta wetland had been investigated. The concentrations of TBC and ∑ HBCDs ranged from 0.20 to 29.03 ng·g? 1 dw and below limits of detections (LODs) to 20.25 ng·g? 1 dw. The average composition profile of three HBCDs isomers were 10.1%, 6.1% and 83.8% for α-, β- and γ-HBCD, respectively. Moreover, correlation analysis indicated there are similar sources among three isomers and positive correlations between total organic carbon (TOC) content and concentrations of TBC and HBCDs. The mass inventory of TBC,α-, β-, γ-HBCD, ΣHBCDs in surface sediments of Yellow River Delta wetland were estimated about 725.50, 72.76, 44.29, 548.34, 665.39 kg. Therefore, further investigations on potential human health and environmental risk assessments of TBC and HBCDs were needed.  相似文献   

16.
《国际泥沙研究》2020,35(6):651-658
Scientific evaluation of the sediment allocation effects in the Yellow River plays an important role in the comprehensive harnessing of the Yellow River. A new evaluation index system for sediment allocation has been established using the Analytic Hierarchy Process, and six main evaluation indexes have been selected for this study. The calculation methods and evaluation criteria of each evaluation index are proposed. The evaluation criterion of bankfull discharge in the upper reach is 2,000 m3/s, that of Tongguan elevation in the middle reach is 325.7 m, and that of bankfull discharge in the lower reach is 4,000 m3/s. The evaluation criteria of water volume and sediment volume into the Yellow River are 25 billion m3/a and 300 million t/a, respectively, and that of sediment volume into the sea to maintain stability of the estuary is 130–260 million t/a. The comprehensive evaluation method and grade index are proposed, and the effect of sediment allocation in the Yellow River from 1960 to 2015 is evaluated. The comprehensive evaluation grades in different periods are determined. The evaluation results objectively reflect the situation of sediment allocation in the Yellow River, and the new comprehensive evaluation method can be applied to evaluate the sediment allocation scheme of the Yellow River in the future.  相似文献   

17.
Sixty-eight sediment samples collected from Dongjiang River, Xijiang River, Beijiang River and Zhujiang River in the Pearl River Delta (PRD) region, Southern China, were analyzed for 16 phthalate esters (PAEs). PAEs were detected in all riverine sediments analyzed, which indicate that PAEs are ubiquitous environmental contaminants. The Σ16PAEs concentrations in riverine sediments in the PRD region ranged from 0.567 to 47.3 μg g1 dry weight (dw), with the mean and median concentrations of 5.34 μg g1 dw and 2.15 μg g1 dw, respectively. Elevated PAEs concentrations in riverine sediments in the PRD region were found in the highly urbanized and industrialized areas. Of the 16 PAEs, diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) dominated the PAEs, with the mean and median concentrations of 1.12 μg g1 dw, 0.420 μg g1 dw and 3.72 μg g1 dw, and 0.429 μg g1 dw, 0.152 μg g1 dw and 1.55 μg g1 dw, respectively, and accounted for 94.2–99.7% of the Σ16PAEs concentrations. Influenced by local sources and the properties of PAEs, a gradient trend of concentrations and a fractionation of composition from more to less industrialized and urbanized areas were discovered. As compared to the results from other studies, the riverine sediments in the PRD region were severely contaminated with PAEs. Information about PAEs contamination status and its effect on the aquatic organisms in the PRD region may deserve further attention.  相似文献   

18.
The equilibrium relations for water and sediment transport refer to the relative balance of sediment transport and the relative stability of river courses formed by the automatic adjustment of riverbeds.This is the theoretical basis for the comprehensive management of sediment in the Yellow River.Based on the theories of sediment carrying capacity and the delayed response of riverbed evolution,in this study,the equilibrium relations for water and sediment transport in the Yellow River are established.These relations include the equilibrium relationships between water and sediment transport and bankfull discharge in the upper and lower Yellow River and between water and sediment transport and the Tongguan elevation in the middle Yellow River.The results reveal that for the Ningmeng reach,the Tongguan reach,and the lower Yellow River,erosion and deposition in the riverbeds are adjusted automatically,and water and sediment transport can form highly constrained equilibrium relationships.These newly established equilibrium relationships can be applied to calculate the optimal spatial allocation scheme for sediment in the Yellow River.  相似文献   

19.
Droughts are one of the normal and recurrent climatic phenomena on Earth. However, recurring prolonged droughts have caused far‐reaching and diverse impacts because of water deficits. This study aims to investigate the hydrological droughts of the Yellow River in northern China. Since drought duration and drought severity exhibit significant correlation, a bivariate distribution is used to model the drought duration and severity jointly. However, drought duration and drought severity are often modelled by different distributions; the commonly used bivariate distributions cannot be applied. In this study, a copula is employed to construct the bivariate drought distribution. The copula is a function that links the univariate marginal distributions to form the bivariate distribution. The bivariate return periods are also established to explore the drought characteristics of the historically noticeable droughts. The results show that the return period of the drought that occurred in late 1920s to early 1930s is 105 years. The significant 1997 dry‐up phenomenon that occurred in the downstream Yellow River (resulting from the 1997–1998 drought) only has a return period of 4·4 years and is probably induced by two successive droughts and deteriorated by other factors, such as human activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

An index (Fs) for sediment transfer function is introduced, based on the sediment budget at the channel scale. The purpose of this study is two-fold: to gain a deeper insight into how Fs is influenced by natural and human factors, and to provide some new knowledge for decision making in the management of the Upper Yellow River, China. Since 1960, the Fs of the Lanzhou to Toudaoguai reach of the Upper Yellow River shows a decreasing trend. At the drainage basin level, the decreased Fs can be explained by changes in precipitation and air temperature, as well as by a number of variables describing human activity, such as reservoir regulation, water diversion, and soil and water conservation. The higher temperature reduces the transfer function, while the larger runoff coefficient increases it. At the channel level, the decreased Fs can be explained by a number of variables of flow and sediment input. Three countermeasures for restoration of the Fs are suggested.
Editor Z.W. Kundzewicz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号