首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Six reef sites were chosen along the west coasts of Singapore's southern islands, to: (1) quantitatively assess and compare coral community composition and structure, and recruitment rates, (2) assess the relationship between the aforementioned patterns and the environmental conditions, and (3) provide insights on potential processes that incorporate history at these study sites. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2)year(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (Recruitment rate, RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates. Although measured levels of the down-ward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

2.
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.  相似文献   

3.
Macroalgae, hard corals, octocorals, and fish were surveyed on 10 to 13 inshore coral reefs of the Great Barrier Reef, along a water quality gradient in two regions with contrasting agricultural land use. A water quality index was calculated for each reef based on available data of particulate and dissolved nutrients, chlorophyll and suspended solids. Strong gradients in ecological attributes occurred along the water quality gradient. Macroalgae of the divisions Rhodophyta and Chlorophyta increased with increasing nutrients, while Phaeophyta remained similar. Octocoral richness and abundances of many hard coral and octocoral taxa decreased, and none of the hundreds of species increased. At reefs in higher nutrient environments, hard coral and octocoral assemblages were composed of subsets of the many species found in lower nutrient environments, whereas fish and macroalgal assemblages consisted of contrasting suites of species. The study identifies species groups that are likely to increase or decrease in abundance with changing water quality.  相似文献   

4.
We conducted the first quantitative assessment of coral breakage along a gradient of diving activities in Hong Kong, the most densely populated city in southern China. A survey of six 1 × 25 m transects at seven sites revealed a total of 81 broken corals, among which 44% were branching, 44% plate-like and 12% massive. There were 3–19 broken colonies per site. At most study sites, the percentage of broken corals exceeded the recommended no-action threshold of 4%, suggesting that management intervention is justified. There was a significant positive correlation between the number of broken coral colonies and the number of divers visiting the site. The branching Acropora and the plate-like Montipora suffered from much higher frequency of damage than their relative abundance, raising the concern that the cumulative impact of such differential susceptibility to breakage may affect coral community composition.  相似文献   

5.
A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway.  相似文献   

6.
Six reef sites were chosen along the west coast of the southern islands of Singapore, at an increasing distance from the densely populated metropolitan area, to study the spatial patterns of coral reef communities on the upper reef slope ( approximately 4m) and the associated environmental conditions. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2) yr(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well-adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates (RR). Although measured levels of the downward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

7.
Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.  相似文献   

8.
9.
Colonies of reef-building stony corals at 57 stations around St. Croix, US Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance—a requirement for indicators used in regulatory assessments under authority of the Clean Water Act. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size, total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode and taxonomic identity were also screened. The primary indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regional-scale regulatory program.  相似文献   

10.
Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world’s most dived (>30,000 dives y−1). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3 m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.  相似文献   

11.
South African coral reefs are limited in size but, being marginal, provide a model for the study of many of the stresses to which these valuable systems are being subjected globally. Soft coral cover, comprising relatively few species, exceeds that of scleractinians over much of the reefs. The coral communities nevertheless attain a high biodiversity at this latitude on the East African coast. A long-term monitoring programme was initiated in 1993, entailing temperature logging and image analysis of high resolution photographs of fixed quadrats on representative reef. Sea temperatures rose by 0.15 degrees C p.a. at the site up to 2000 but have subsequently been decreasing by 0.07 degrees C p.a. Insignificant bleaching was encountered in the region during the 1998 El Nino Southern Oscillation (ENSO) event, unlike elsewhere in East Africa, but quantifiable bleaching occurred during an extended period of warming in 2000. Peak temperatures on the South African reefs thus appear to have attained the coral bleaching threshold. While this has resulted in relatively little bleaching thus far, the increased temperatures appear to have had a deleterious effect on coral recruitment success as other anthropogenic influences on the reefs are minimal. Recruitment success diminished remarkably up to 2004 but appears again to be improving. Throughout, the corals have also manifested changes in community structure, involving an increase in hard coral cover and reduction in that of soft corals, resulting in a 5.5% drop in overall coral cover. These "silent" effects of temperature increase do not appear to have been reported elsewhere in the literature.  相似文献   

12.
The coral reef ecosystems of Nanwan Bay, Southern Taiwan are undergoing degradation due to anthropogenic impacts, and as such have resulted in a decline in coral cover. As a first step in preventing the continual degradation of these coral reef environments, it is important to understand how changes in water quality affect these ecosystems on a fine-tuned timescale. To this end, a real-time water quality monitoring system was implemented in Nanwan Bay in 2010. We found that natural events, such as cold water intrusion due to upwelling, tended to elicit temporal shifts in coral spawning between 2010 and 2011. In addition, Degree Heating Weeks (DHWs), a commonly utilized predictor of coral bleaching, were 0.92 and 0.59 in summer 2010 and 2011, respectively. Though this quantity of DHW was below the presumed stress-inducing value for these reefs, a rise in DHWs in the future may stress the resident corals.  相似文献   

13.
In July 2001, the National Museum of Marine Biology and Aquarium, co-sponsored by the Kenting National Park Headquarters and Taiwan's National Science Council, launched a Long-Term Ecological Research (LTER) program to monitor anthropogenic impacts on the ecosystems of southern Taiwan, specifically the coral reefs of Kenting National Park (KNP), which are facing an increasing amount of anthropogenic pressure. We found that the seawater of the reef flats along Nanwan Bay, Taiwan's southernmost embayment, was polluted by sewage discharge at certain monitoring stations. Furthermore, the consequently higher nutrient and suspended sediment levels had led to algal blooms and sediment smothering of shallow water corals at some sampling sites. Finally, our results show that, in addition to this influx of anthropogenically-derived sewage, increasing tourist numbers are correlated with decreasing shallow water coral cover, highlighting the urgency of a more proactive management plan for KNP's coral reefs.  相似文献   

14.
The current state of health of the coral reefs in the northern Gulf of Aqaba (Red Sea), notably the Eilat reefs, is under debate regarding both their exact condition and the causes of degradation. A dearth of earlier data and unequivocal reliable indices are the major problems hinder a clear understanding of the reef state. Our research objective was to examine coral-algal dynamics as a potential cause and an indication of reef degradation. The community structure of stony corals and algae along the northern Gulf of Aqaba reveal non-seasonal turf algae dominancy in the shallow Eilat reefs (up to 72%), while the proximate Aqaba reefs present negligible turf cover (<6%). We believe that turf dominancy can indicate degradation in these reefs, based on the reduction in essential reef components followed by proliferation of perennial turf algae. Our findings provide further evidence for the severe state of the Eilat coral reefs.  相似文献   

15.
Although reef corals worldwide have sustained epizootics in recent years, no coral diseases have been observed in the southwestern Atlantic Ocean until now. Here we present an overview of the main types of diseases and their incidence in the largest and richest coral reefs in the South Atlantic (Abrolhos Bank, eastern Brazil). Qualitative observations since the 1980s and regular monitoring since 2001 indicate that coral diseases intensified only recently (2005–2007). Based on estimates of disease prevalence and progression rate, as well as on the growth rate of a major reef-building coral species (the Brazilian-endemic Mussismilia braziliensis), we predict that eastern Brazilian reefs will suffer a massive coral cover decline in the next 50 years, and that M. braziliensis will be nearly extinct in less than a century if the current rate of mortality due to disease is not reversed.  相似文献   

16.
Managing the effects of anthropogenic disturbance on coral reefs is highly dependant on effective strategies to assess degradation and recovery. We used five years of field data in the US Virgin Islands to investigate coral reef response to a potential gradient of stress. We found that the prevalence of old partial mortality, bleaching, and all forms of coral health impairment (a novel category) increased with nearshore anthropogenic processes, such as a five-fold higher rate of clay and silt sedimentation. Other patterns of coral health, such as recent partial mortality, other diseases, and benthic cover, did not respond to this potential gradient of stress or their response could not be resolved at the frequency or scale of monitoring. We suggest that persistent signs of disturbance are more useful to short-term, non-intensive (annual) coral reef assessments, but more intensive (semi-annual) assessments are necessary to resolve patterns of transient signs of coral health impairment.  相似文献   

17.
A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance.  相似文献   

18.
The primary objectives of coral transplantation are to improve reef ‘quality' in terms of live coral cover, biodiversity and topographic complexity. Stated reasons for transplanting corals have been to: (1) accelerate reef recovery after ship groundings, (2) replace corals killed by sewage, thermal effluents or other pollutants, (3) save coral communities or locally rare species threatened by pollution, land reclamation or pier construction, (4) accelerate recovery of reefs after damage by Crown-of-thorns starfish or red tides, (5) aid recovery of reefs following dynamite fishing or coral quarrying, (6) mitigate damage caused by tourists engaged in water-based recreational activities, and (7) enhance the attractiveness of underwater habitat in tourism areas. Whether coral transplantation is likely to be effective from a biological standpoint depends on, among other factors, the water quality, exposure, and degree of substrate consolidation of the receiving area. Whether it is necessary (apart from cases related to reason 3 above), depends primarily on whether the receiving area is failing to recruit naturally.

The potential benefits and dis-benefits of coral transplantation are examined in the light of the results of research on both coral transplantation and recruitment with particular reference to a 4.5 year study in the Maldives. We suggest that in general, unless receiving areas are failing to recruit juvenile corals, natural recovery processes are likely to be sufficient in the medium to long term and that transplantation should be viewed as a tool of last resort. We argue that there has been too much focus on transplanting fast-growing branching corals, which in general naturally recruit well but tend to survive transplantation and re-location relatively poorly, to create short-term increases in live coral cover, at the expense of slow-growing massive corals, which generally survive transplantation well but often recruit slowly. In those cases where transplantation is justified, we advocate that a reversed stance, which focuses on early addition of slowly recruiting massive species to the recovering community, rather than a short-term and sometimes short-lived increase in coral cover, may be more appropriate in many cases.  相似文献   


19.
During the global coral bleaching event of 1997/1998 Kenyan reefs experienced between 50% and 90% coral mortality, with coral cover at Malindi being reduced from 35–45% (pre-bleaching) to 10–20%. Even before this event there was concern that these reefs were being impacted by increased sediment loads from the nearby Sabaki River. Here we report that since 1998 coral cover has declined yet further with, in 2004, means of 5.1% being recorded at North Reef (within the non-fished Malindi Marine National Park) and 2.3% on Leopard Reef (within the fished Marine Reserve). Prior to bleaching 55 coral genera were recorded from the area, currently we find only 23. Meanwhile algal cover, especially the calcareous green alga Halimeda, has increased, and on Leopard Reef is twice that on North Reef. Taken with the evidence of previous studies, these data suggest a combined impact of coral bleaching with sedimentation and fishing.  相似文献   

20.
Anthropogenic threats to cold-water coral reefs are trawling and hydrocarbon drilling, with both activities causing increased levels of suspended particles. The efficiency of Lophelia pertusa in rejecting local sediments and drill cuttings from the coral surface was evaluated and found not to differ between sediment types. Further results showed that the coral efficiently removed deposited material even after repeated exposures, indicating an efficient cleaning mechanism. In an experiment focusing on burial, fine-fraction drill cuttings were deposited on corals over time. Drill cutting covered coral area increased with repeated depositions, with accumulation mainly occurring on and adjacent to regions of the coral skeleton lacking tissue cover. Tissue was smothered and polyp mortality occurred where polyps became wholly covered by material. Burial of coral by drill cuttings to the current threshold level used in environmental risk assessment models by the offshore industry (6.3 mm) may result in damage to L. pertusa colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号