首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Estuarine and coastal sediment transport is characterised by the transport of both sand-sized particles (of diameter greater than 63?μm) and muddy fine-grained sediments (silt, diameter less than 63?μm; clay, diameter less than 2?μm). These fractions are traditionally considered as non-cohesive and cohesive, respectively, because of the negligible physico-chemical attraction that occurs between sand grains. However, the flocculation of sediment particles is not only caused by physico-chemical attraction. Cohesivity of sediment is also caused by biology, in particular the sticky extra-cellular polymeric substances secreted by diatoms, and the effect of biology in binding sediment particles can be much larger than that of physico-chemical attraction. As demonstrated by Manning (2008) and further expanded in part 1 of this paper (Manning et al., submitted), the greater binding effect of biology allows sand particles to flocculate with mud. In many estuaries, both the sand and fine sediment fractions are transported in significant quantities. Many of the more common sediment transport modelling suites now have the capability to combine mud and sand transport. However, in all of these modelling approaches, the modelling of mixed sediment transport has still essentially separated the modelling of sand and mud fractions assuming that these different fractions do not interact except at the bed. However, the use of in situ video techniques has greatly enhanced the accuracy and reliability of settling velocity measurements and has led to a re-appraisal of this widely held assumption. Measurements of settling velocity in mixed sands presented by Manning et al. (2009) have shown strong evidence for the flocculation of mixed sediments, whilst the greater understanding of the role of biology in flocculation has identified mechanisms by which this mud-sand flocculation can occur. In the first part of this paper (Manning et al., submitted), the development of an empirical flocculation model is described which represents the interaction between sand and mud particles in the flocculation process. Measurements of the settling velocity of varying mud-sand mixtures are described, and empirical algorithms governing the variation of settling velocity with turbulence, suspended sediment concentration and mud-sand content are derived. The second part of this paper continues the theme of examination of the effects of mud-sand interaction on flocculation. A 1DV mixed transport model is developed and used to reproduce the vertical transport of mixed sediment fractions. The 1DV model is used to reproduce the measured settling velocities in the laboratory experiments described in the part 1 paper and also to reproduce measurements of concentration of mixed sediments in the Outer Thames. In both modelling exercises, the model is run using the algorithms developed in part 1 and repeated using an assumption of no interaction between mud and sand in the flocculation process. The results of the modelling show a significant improvement in the ability of the 1DV to reproduce the observed sediment behaviour when the empirical equations are used. This represents further strong evidence of the interaction between sand and mud in the flocculation process.  相似文献   

2.
3.
Sediment found in China’s Yangtze and Yellow River systems is characterized by large silt fractions. In contrast to sand and clay, sedimentation and erosion behaviour of silt and silt–clay–sand mixtures is relatively unknown. Therefore, settling and consolidation behaviour of silt-rich sediment from these river systems is analysed under laboratory conditions in specially designed settling columns. Results show that a transition in consolidation behaviour occurs around clay contents of about 10 %, which is in analogy with the transition from non-cohesive to cohesive erosion behaviour. Above this threshold, sediment mixtures consolidate in a cohesive way, whereas for smaller clay percentages only weak cohesive behaviour occurs. The settling behaviour of silt-rich sediment is found to be in analogy with granular material at concentration below 150 g/l. Above 150–200 g/l, the material settles in a hindered settling regime where segregation is limited or even prevented. The results indicate that for modelling purposes, multiple sediment fractions need to be assessed in order to produce accurate modelling results.  相似文献   

4.
Sediment resuspension is an important way for shallow lake internal pollution to interact with the overlying water column,and the pollution risks are reasonably related to the retention of resuspended sediment particles in overlying water.In the current study,the settling of resuspended sediment particles was comprehensively investigated under different disturbances using five urban lake sediments.The results show that the particle size distributions of resuspended sediment from different lakes exhibited similar variations during settling with disturbance,although varied settling times were observed under static conditions.During settling with and without disturbance,sediment particle sizes were mainly within 8-63μm at the initial stage,and were<8μm in the later stages of settling.Based on these settling characteristics,the sediment particle size was divided into sand(>63μm),silt(8-63μm),and very fine silt and clay(<8μm)fractions.Kinetic analysis suggested that sediment settling for different particle sizes could be well described by the first-and second-order kinetic equations,especially when settling was disturbed(r2=0.727-0.999).The retention of resuspended sediment could be enhanced as particle sizes decreased and disturbance intensities increased.Furthermore,a water elutriation method was successfully optimized,with separation efficiencies of 56.1%-83%,to separate sediment particles into the defined three particle size fractions.The chemical compositions of sediment were found to change with different particle sizes.Typically,calcium tended to form large-size sediment,while the total contents of aluminum,iron,magnesium,and manganese showed significantly negative correlations with sediment particle sizes(p<0.01)and tended to distribute in small-size particles(e.g.,<8μm).Overall,the sediment particle size related settling dynamics and physicochemical properties suggested the necessity on determining the pollution of resuspended sediment at different particle sizes for restoration of shallow lakes.  相似文献   

5.
1. INTRODUCTIONAs a wide range of size distirbution including usually a certain POrtion of cohesive material is thecommon feature of the sediment constituting hyperconcentrated flows. it is desirable to study the settling properties of mixtures of cohesive and non--cohesjve sediment particles at high concentrations.Past studies on the settling of discrete particles in a suspension of fine cohesjve sediment is scarcein the literature. The Sediment Research Laboratory of Tsinghua Universi…  相似文献   

6.
An increasingly common method to restore eroding beaches is nourishment, a process by which lost sand is replaced with terrestrial or offshore sediments to widen beaches. The southeastern Florida coastline contains shore-parallel coral reef communities adjacent to eroding beaches. Scleractinian corals and other reef-associated organisms are known to demonstrate sensitivity to elevated sedimentation levels. Sediment traps were used to examine spatio-temporal sedimentation patterns and assess the effects of nourishment (dredge and fill) activities. Several environmental variables correlated with among-site spatial variability of sediment parameters. Intra-annual variability correlated with wind velocity and direction. Nourishment activities showed localized effects, with sites in close proximity to dredging areas exhibiting significantly higher collection rates and lower percent fines than control sites. A regional increase in sedimentation occurred while nourishment activities were ongoing. Due to concurrent impacts of hurricanes, only one during-construction sampling interval revealed substantially higher collection rates relative to corresponding pre-construction sampling intervals.  相似文献   

7.
A method for collecting suspended sediment samples has been developed that pumps a discharge-weighted volume of water from fixed depths at four to 40 locations across a river and separates the suspended sediment in the sample using a continuous-flow centrifuge. The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (> 63 μm) but to collect a representative sample of the suspended silt and clay sized particles (< 63 μm). The centrifuge separated the silt and clay sized particles (< 63 μm) into three fractions. Based on the average results of processing 17 samples from the Mississippi River and several of its large tributaries in 1990, about 10% of the silt and clay sized material was trapped in a centrifuge bowl-bottom sealing unit containing the nozzle and consisted of mostly medium and coarse silt from 16 to 63 μm. About 74% was retained on a Teflon liner in the centrifuge bowl and consisted of sizes from 0–1 to 63 μm. About 9% was discharged from the centrifuge in the effluent and was finer than 0–1 μm. About 7% was lost during the processes of removing the wet sediment fractions from the centrifuge, drying and weighing. The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (< 63 μm) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles.  相似文献   

8.
In this work a new expression has been developed to predict the settling velocity of a sediment particle which is dispersed in a sediment-fluid mixture during a turbulent flow. A concept of apparent particle diameter has been introduced and is defined by the diameter of the spherical volume in which the particle can move randomly after collision with other particles in suspension. The effect of suspension concentration is studied on the mass density of the sediment-fluid mixture. It has been shown that the settling velocity of sediment particle in a sediment-fluid mixture is a function of different characteristics of the sediment particle such as settling velocity in clear fluid, suspension concentration, relative mass density and Reynolds number. The model has shown good agreement when compared with previously published experimental data and it’s prediction accuracy is superior than the other existing models.  相似文献   

9.
The coral reefs in Bermuda's Castle Harbour basin have been subjected to varying anthropogenic stressors for over 100 years. These include restriction of water flow through the construction of a causeway in the late 19th century and an extensive dredging and land reclamation operation during World War II. In the 1970s, disposal of bulk waste commenced at a foreshore reclamation site in Castle Harbour. Since 1996 the waste stream has included blocks of cement-stabilized municipal incinerator ash. This study provides a historical and quantitative ecological review of the Castle Habour reef ecosystem as a case study, assessing the responses of the reef to more than a century of anthropogenic disturbance. Measures of the coral community, flow rates, turbidity and sedimentary regimes suggest the present structure of the coral community largely reflects the impacts of the historic dredge and fill operations prior to the establishment of the foreshore dump site. Recent increases in the abundance of some sediment tolerant, massive reef-building coral species (Diploria strigosa and Montastraea cavernosa) suggest adaptation to chronic sediment stress.  相似文献   

10.
Wind erosion measurements were carried out in Nellis Dunes Recreation Area, southern Nevada, USA. Gross erosion (the total mass of sediment effectively blown away from a surface), gross deposition (the total mass of sediment effectively depositing on a surface) and net erosion (the difference in sediment mass before and after an event) were measured for 1 year, on 17 different types of surfaces developed on loose dune sand, compacted sand, loose silt, compacted and/or aggregated silt, rock‐covered sands and silts, mixtures of sand, silt and clay, exposed petrocalcic horizons, gravelly substrata and bedrock. Results showed that net erosion, which is the type of erosion measured in field and laboratory experiments, strongly differs from gross erosion. Activity on a surface is much higher than classic net erosion measurements suggest. Future studies on wind erosion should better acknowledge the distinction between the two types of process. Also, a grain diameter of maximum susceptibility to wind erosion (‘optimum deflation diameter’) near 70 µm as proposed by the aeolian literature only exists for net wind erosion. No such optimum diameter was found for gross wind erosion within the particle range 0–100 µm delineating the transport modes of suspension and modified saltation. In addition, desert surfaces predominantly composed of sand did not show an optimum deflation diameter (for net erosion) around 70 µm. Instead, there was a preferential grain size around 15 µm at which particles were most vulnerable to net emission. Desert surfaces poor in sand showed the classic value of 70 µm. This suggests that interactions exist between the type of surface and the susceptibility of particles to wind erosion. This study is solely based on field data. Although results are supported by two previous wind tunnel studies, more wind tunnel experiments documenting the interactions between gross erosion and gross deposition are necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The sediment load of the Yangtze River (China) is decreasing because of construction of dams, of which the Three Gorges Dam (TGD) is the best known example. The rate of the decline in sediment load is well known, but changes in the sediment grain size distribution have not been given much attention. The TGD mostly traps sand and silt while clay is flushed through the reservoir. A large amount of sand is available in the Yangtze River downstream of the reservoir, and therefore the pre-dam sand concentration is not substantially reduced. The availability of silt on the Yangtze River bed is limited, and it is expected that most silt will be removed from the riverbed within one to two decades. In order to evaluate the impact of the change in grain size distribution on the tidal flats of the Yangtze Estuary, a highly schematized tidal flat model is setup. This model broadly reveals that the observed deposition rates are exceptionally large because of the high sediment concentration, the abundance of silt, the seasonal dominance of waves (shaping a concave profile), and the offshore tidal asymmetry. The model further suggests that deposition rates will be limitedly influenced by reductions in clay or fine silt but strongly impacted by reductions in median to coarse silt. The response of the downstream morphology to reservoir sedimentation therefore strongly depends on the type of trapped sediment. As a consequence, silt-dominated rivers, such as the Yangtze River and the Yellow River may be more strongly impacted than sand-dominated systems.  相似文献   

12.
Alluvial gullies are often formed in dispersible sodic soils along steep banks of incised river channels. Field data collected by Shellberg et al. (Earth Surface Processes and Landforms 38: 1765–1778, 2013) from a gully outlet in northern Australia showed little hysteresis between water discharge and fine (<63 µm) and coarse (>63 µm) suspended sediment, indicating transport‐limited rather than source‐limited conditions. The major source of the fine (silt/clay) component was the sodic soils of upstream gully scarps, and the coarser (sand) component was sourced locally from channel bed material. In this companion paper at the same study site, a new method was developed for combining the settling velocity characteristics of these two sediment source components to estimate the average settling velocity of the total suspended sediment. This was compared to the analysis of limited sediment samples collected during flood conditions. These settling velocity data were used in the steady‐state transport limit theory of Hairsine and Rose (Water Resources Research 28: 237–243, 245–250, 1992) that successfully predicted field data of concentrations and loads at a cross‐section, regardless of the complexity of transport‐limited upstream sources (sheet erosion, scalds, rills, gullies, mass failure, bank and bed erosion, other disturbed areas). The analysis required calibration of a key model parameter, the fraction of total stream power (F ≈ 0.025) that is effective in re‐entraining sediment. Practical recommendations are provided for the prediction of sediment loads from other alluvial gullies in the region with similar hydrogeomorphic conditions, using average stream power efficiency factors for suspended silt/clay (Fw ≈ 0.016) and sand (Fs ≈ 0.038) respectively, but with no requirement for field data on sediment concentrations. Only basic field data on settling velocity characteristics from soil samples, channel geometry measurements, estimates of water velocity and discharge, and associated error margins are needed for transport limit theory predictions of concentration and load. This theory is simpler than that required in source‐limited situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
鄱阳湖是目前我国最大的淡水湖,采砂活动对湖泊水质影响明显,但对采砂活动进行全面的现场监管较为困难.不过,采砂船工作时会明显改变附近水体悬浮泥沙的浓度,这一易于被遥感技术检测到的信息为解决这一问题提供了思路.本研究使用2013—2020年共133景GF-1 WFV影像对鄱阳湖采砂活动进行监测,并总结鄱阳湖采砂活动变化的时、空间规律.结果表明,1)2013年以来,鄱阳湖的年平均采砂船检测数呈先增多后减少的趋势,2016年是采砂活动的顶峰,年平均检测数为9.85艘,2019年后采砂船的年平均检测数锐减至3艘左右,其中监管政策是最主要的影响因素;2)鄱阳湖采砂活动向南湖扩展的趋势在2016年得到了有效的遏制,并在2018年后一直维持在很低的水平;3)在2019年全面禁止采砂后,仍然在松门山岛、星子县及笔架山附近监测到了零星的采砂船作业点.本研究不仅可以评估近年来鄱阳湖采砂活动监管的成效,也能给相似水域采砂活动的监管及其效果评估提供参考.  相似文献   

14.
15.
The settling potential of fine sediment is known to be influenced by particle size, shape, density and porosity, and is commonly predicted using Stokes's law, despite its known limitations for modelling the behaviour of natural particles. In order to develop an improved understanding of the potential for fine sediment to settle out of suspension or undergo transport by hydraulic processes, it is important to examine the role of particle structure in detail. In this study, stepwise regression was used to identify which structural properties of particles exert an important control on fine sediment behaviour in river systems. The presence of composite particles and their associated particle size, porosity and fractal dimension were shown to be the most important controls on settling potential. Composite particles that form in the aquatic environment (flocs) were shown to have significantly different form and behaviour from composite particles of terrestrial origin (aggregates). Importantly, it was demonstrated that particle structure and behaviour exhibited consistencies between contrasting river catchments in different locations. An understanding of the mechanisms responsible for the formation of composite particles is viewed as providing a valuable input to efforts to model the mobilisation, transport and fate of fine sediment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
17.
《Continental Shelf Research》2007,27(10-11):1408-1421
Particle size distribution and size-specific settling velocity are critical parameters for understanding the transport of fine sediment on continental margins. In this study, observed floc size versus settling velocity, volume distributions of particles 2 μm–1 cm in diameter, and calculated effective densities for all particle sizes provided estimates of the mass distribution in suspension, which is used to apportion mass among component particles, microflocs, and macroflocs. Measurements were made during relatively quiescent environmental conditions. Observations of size distributions based on mass demonstrate an increase in the component particle fraction through time. The increase in the percentage of component particles in suspension had implications on water column properties, as small changes in the component particle fraction affected water column optical transmission in a way that was not as easily detected by changes in the volume concentration distribution or total mass concentration. Flocs larger than 133 μm in diameter only comprised one quarter to one third of the mass in suspension. This finding may explain why suspension bulk clearance rates are often an order of magnitude lower than those predicted by other methods.  相似文献   

18.
We investigated the long-term effects of sand extraction activities on the nematode communities from the Kwintebank. Although changes in nematode community composition cannot be completely uncoupled from natural processes, we suggest that the morphological changes in the sandbank and physical disturbance associated with the dredging activities indeed affected nematode community composition. Nematode diversity did not change since the start of the extraction activities but nematode community composition changed significantly. The SIMPER routine identified predatory nematodes to be important for the within group similarity at the start of the exploitation, while similarity in 1997 and 2001 was determined by the contribution of deposit feeding nematodes. In addition, long nematodes, vulnerable to physical disturbance became less important. These changes are attributed to long term changes in sediment characteristics in combination with additional short-term disturbances by the creation and filling of dredge furrows which are related to the extraction activities.  相似文献   

19.
Flocculation settling characteristics of mud: sand mixtures   总被引:2,自引:1,他引:1  
When natural muds become mixed with sandy sediments in estuaries, it has a direct effect on the flocculation process and resultant sediment transport regime. Much research has been completed on the erosion and consolidation of mud/sand mixtures, but very little is known quantitatively about how mixed sediments interact whilst in suspension, particularly in terms of flocculation. This paper presents the settling velocity findings from a recent laboratory study which examined the flocculation dynamics for three different mud/sand mixtures at different concentrations (0.2–5 g.l?1) and turbulent shear stresses (0.06–0.9 Pa) in a mini-annular flume. The low intrusive video-based Laboratory Spectral Flocculation Characteristics instrument was used to determine floc/aggregate properties (e.g., size, settling velocity, density and mass) for each population. Settling data was assessed in terms of macrofloc (>160 μm) and microfloc (<160 μm) settling parameters: Wsmacro and Wsmicro, respectively. For pure muds, the macroflocs are regarded as the most dominant contributors to the total depositional flux. The parameterised settling data indicates that by adding more sand to a mud/sand mixture, the fall velocity of the macrofloc fraction slows and the settling velocity of microflocs quickens. Generally, a mainly sandy suspension comprising 25% mud and 75% sand (25M:75S), will produce resultant Wsmacro which are slower than Wsmicro. The quickest Wsmicro appears to consistently occur at a higher level of turbulent shear stress (τ?~?0.6 Pa) than both the macrofloc and microfloc fractions from suspensions of pure natural muds. Flocculation within a more cohesively dominant muddy-sand suspension (i.e., 75M:25S) produced macroflocs which fell at similar speeds (±10%) to pure mud suspensions at both low (200 mg l?1) and intermediate (1 g?l?1) concentrations at all shear stress increments. Also, low sand content suspensions produced Wsmacro values that were faster than the Wsmicro rates. In summary, the experimental results of the macrofloc and microfloc settling velocities have demonstrated that flocculation is an extremely important factor with regards to the depositional behaviour of mud/sand mixtures, and these factors must be considered when modelling mixed sediment transport in the estuarine or marine environment.  相似文献   

20.
Understanding the impact of marine sand mining operations in a complex coastal environment requires a combined observational and modeling approach. Here, we use field measurements collected during mining operations in Kyunggi Bay, Korea to develop sediment parameters and source conditions for a three-dimensional (3D) sediment transport model built on the Regional Ocean Modeling System (ROMS). The model is run with realistic forcing obtained from a 9 km meteorological model, tides, and river discharges. The resulting vertical and horizontal distributions of sediment show encouraging agreement with the field data, demonstrating markedly different dispersal patterns due largely to the differential settling of the various sand classes. The resulting depositional patterns suggest that only the coarser size classes (500 and 250 μm) particles remain close to the mined site, while finer size classes are widely dispersed. These results suggest that this new methodology of multi-size class, 3D sediment transport modeling is quite promising, and further work is ongoing to include more realistic representation of sediment resuspension processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号