首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

2.
We report newly obtained U-Pb SHRIMP ages of detrital zircons from metagreywackes in the Hiriyur Formation (Chitradurga Group, Dharwar Supergroup) from the central eastern part of the Chitradurga greenstone belt. U-Pb analyses yield three major Neoarchean age populations ranging from 2.70–2.54 Ga with some minor age population of Mesoarchean. The maximum age of deposition is constrained by the youngest detrital zircon population at 2546 Ma. This is the first report of the occurrence of supracrustal rocks less than 2.58 Ga in the central part of Chitradurga greenstone belt. Close evaluation of detrital ages with the published ages of surrounding igneous rocks suggest that the youngest detrital zircons might be derived from rocks of the Eastern Dharwar craton and the inferred docking of the western and eastern Dharwar cratons happened prior to the deposition of the Hiriyur Formation. The Chitradurga shear zone, dividing the Dharwar craton into western and eastern blocks, probably developed after the deposition. Furthermore, the lower intercept is interpreted as evidence for the Pan-African overprints in the study area.  相似文献   

3.
Felsic magmatism associated with ocean–ocean and ocean–continent subduction processes provide important evidence for distinct episodes of crust-generation and continental lithospheric evolution. Rhyolites constitute an integral component of the tholeiitic to calc-alkaline basalt–andesite–dacite–rhyolite (BADR) association and contribute to crustal growth processes at convergent plate margins. The evolution of the Dharwar Craton of southern peninsular India during Meso- to Neoarchean times was marked by extensive development of greenstone belts. These granite-greenstone terranes have distinct volcano-sedimentary associations consistent with their geodynamic setting. The present study deals with geochemistry of rhyolites from the Chitradurga-Shimoga greenstone belts of western (WDC) and the Gadwal-Kadiri greenstone belts of eastern (EDC) sectors of Dharwar Craton to compare and evaluate their petrogenesis and geodynamic setting and their control on the continental lithospheric evolution of the Dharwar Craton. At a similar range of SiO2, Al2O3, Fe2O3, the rhyolites of WDC are more potassic, whereas the EDC rhyolites are more sodic and less magnesian with slight increase in TiO2. Minor increase in MgO content of WDC rhyolites reflects their ferromagnesian trace elements which are comparatively lower in the rhyolites of EDC. The relative enrichment in LILE (K, Rb) and depletion in HFSE (Nb, Ta, Zr, Hf) marked by negative Nb–Ta, Zr–Hf and Ti anomalies endorse the convergent margin processes for the generation of rhyolites of both the sectors of Dharwar Craton. The high silica potassic rhyolites of Shimoga and Chitradurga greenstone belts of WDC showing prominent negative Eu and Ti anomalies, flat HREE patterns correspond to Type 3 rhyolites and clearly point towards their generation and emplacement in an active continental margin environment. The geochemical characteristics of Gadwal and Kadiri rhyolites from eastern Dharwar Craton marked by aluminous compositions with low and fractionated HREE patterns and minor negative Eu anomalies are in conformity with Type 1 rhyolites and suggest that they were erupted in an intraoceanic island arc system. The overall geochemical systematics of the rhyolites from both the sectors of Dharwar Craton suggest a change in the geodynamic conditions from intraoceanic island arc of eastern Dharwar Craton and an active continental margin of western Dharwar marked by ocean–ocean subduction and migration of oceanic arc towards a continent followed by arc-continent collision that contributed for the evolution of continental lithosphere in the Dharwar Craton.  相似文献   

4.
《Gondwana Research》2003,6(3):501-511
Gravity modeling of an E-W profile across Dharwar Craton, India and Madagascar, integrated with the results of Deep Seismic Sounding (DSS) across the Dharwar Craton suggest a thick crust of 40-42 km under the eastern part of Eastern Dharwar Craton (EDC), the Western Dharwar Craton (WDC) and the central part of the Madagascar. Towards east of these blocks, the crustal thickness is reduced to 36-38 km along the Eastern Ghat Fold Belt (EGFB), shear zone between the EDC and the WDC and the east coast of Madagascar, respectively. These zones of thin crust are also characterized by high density lower crustal rocks associated with thrusts. The seismic section across Dharwar Craton shows domal- shaped reflectors in the lower crust and upper mantle under the WDC which may be related to asthenopheric upwelling during an extension phase. The occurrences of large schist belts with volcano-sedimentary sequences of marine origin of late Archean period (3.0-2.7 Ga) as rift basins in the WDC and Madagascar also suggest an extensional phase in this region during that period. It is followed by a convergence between the WDC and the EDC giving rise to collision-related shear and thrust zones between the WDC and the EDC associated with high density lower crustal rocks. The seismic section shows upwarped reflectors in the upper crust which may be related to this convergence. Eastward dipping reflectors under WDC and EDC and west verging thrusts suggest convergence from the west to the east which resulted in easterly subduction giving rise to subduction-related K-granite plutons of the EDC of 2.6-2.5 Ga. In this regard, the Closepet granite in the EDC which extends almost parallel to the shear zone between the WDC and EDC and shows an I-type calk-alkaline composition may represent relict of an island arc and the linear schist belts with bimodal volcanics of the EDC east of it might have developed as back arc rift basins. Subsequent collision between India and Antarctica along the EGFB during Middle Proterozoic, indicated by eastward dipping reflectors in the crust and the upper mantle and west verging thrust gave rise to contemporary high-grade rocks of the EGFB (1.6-1.0 Ga) and associated mafic and felsic intrusives of this belt. The part of adjoining Cuddapah basin contemporary to the EGFB towards the west consisting of marine shelf type of sediments which are highly disturbed and thickest at its contact with the EGFB may represent a peripheral foreland basin. Gravity modeling provides thickest crust of 42 km in the southern part of the WDC and does not support sharp increase in crustal thickness of 50-60 km with high velocity upper mantle as suggested from receiver function analysis. It may represent some foreign material of high density trapped in this section such as part of oceanic crust during convergence and subduction that is referred to above. It is supported from eastward dipping reflectors in lower crust and upper mantle in adjoining region.  相似文献   

5.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

6.
The crustal scale Shear Zone that can be traced from Gadag in the north to Mandya in the south in Dharwar Craton of southern India is considered as the boundary between two subcratonic blocks namely the Eastern Dharwar Craton (EDC) and the Western Dharwar Craton (WDC) in published literature. The present study on the Gadag-Mandya Shear Zone (GMSZ) in the Javanahalli-Hagalvadi sector has brought out a detailed account on the disposition, geometry and kinematics of the shear zone, and also the distinctive structural patterns of the two adjacent supracrustal belts, namely the Chitradurga schist belt (CSB) in the west and Javanahalli schist belt (JSB) in the east. The JSB has an overall N-S striking and gentle easterly dipping geometry, the structural features of which are indicative of a predominant noncoaxial deformation and westward transportation of the supracrustal assemblage. In contrast, deformation in the CSB, which is defined mainly by a flattening type of strain, has produced an overall verticality of the structures (dominant foliation, axial planes of regional folds).  相似文献   

7.
Major and trace element data for ultramafic and mafic metavolcanic rocks from the volcano-sedimentary belts at Holenarsipur and Shigegudda are presented. Although the Holenarsipur belt has been regarded as representing two stratigraphic groups separated widely in time — the Sargur (pre-3,4 Ga) and Dharwar (post-3,4 Ga) Groups — and Shigegudda is clearly younger than the 3.4 Ga gneisses, representative samples from all three suites are part of the same geochemical population. This comprises komatiitic to tholeiitic lavas which are genetically related by progressive fractional crystallization of olivine + pyroxene ± Cr-spinel. Some of the variability in the high-MgO rocks may reflect differential, partial melting of the mantle. There are two sub-populations, separable into light rare-earth-enriched and light rare-earth-depleted, which may reflect different depths of melting of compositionally homogeneous mantle. Many of the geochemical characteristics of the population bear a strong resemblance to modern basic volcanics formed in destructive plate margin environments.  相似文献   

8.
Accretionary orogens are hallmarks of subduction tectonics along convergent plate margins. Here we report a sequence of low-grade metasediments carrying exhumed blocks of ultramafic, mafic and felsic rocks from Sargur in the Western Dharwar Craton in India. These rocks occur along the southern domain of the Chitradurga Suture Zone, which marks the boundary between the Western and Central Dharwar Cratons and thus provide a window to explore Archean convergent margin processes. We present zircon U-Pb and Lu-Hf data from Sargur metasediments including quartz mica schist, fine-grained quartzite, and pelitic schist, as well as from blocks/layers of trondhjemite, garnet amphibolite, and chromite-bearing serpentinite occurring within the metasedimentary accretionary belt. The detrital zircon grains from the metasediments show multiple age groups, with the oldest age as 3482 Ma and an age peak at 2862 Ma. Magmatic zircons in trondhjemite show 207Pb/206Pb weighted mean age of ca. 2972 Ma, whereas those in the chromite-bearing serpentinite display multiple age populations of ca. 2896, 2750, 2648, 2566 and 2463 Ma, tracing zircon crystallization in an evolving mantle wedge adjacent to a subducting oceanic plate. Metamorphism is dated as ca. 2444 Ma from zircon grains in the garnet amphibolite. Zircon εHf(t) in the mafic-ultramafic rocks and trondhjemite are mostly positive, suggesting a juvenile (depleted mantle) source. The detrital zircon Lu-Hf data suggest that the sediment source involved Paleoarchean juvenile and reworked components. Based on our findings, we propose that the Sargur sequence represents an accretionary mélange which forms part of a major Mesoarchean accretionary orogen that witnessed multiple stages of tectonic erosion at least during three periods at ca. 3200–3000 Ma, 3000–2800 Ma and 2800–2500 Ma removing a large part of the accretionary prism along the convergent margin. We correlate the processes with prolonged subduction-accretion cycle culminating in the final collision between the Western and Central Dharwar cratonic blocks.  相似文献   

9.
Modelling of gravity and airborne magnetic data integrated with seismic studies suggest that the linear gravity and magnetic anomalies associated with Moyar Bhavani Shear Zone (MBSZ) and Palghat Cauvery Shear Zone (PCSZ) are caused by high density and high susceptibility rocks in upper crust which may represent mafic lower crustal rocks. This along with thick crust (44–45 km) under the Southern Granulite Terrain (SGT) indicates collision of Dharwar craton towards north and SGT towards south with N–S directed compression during 2.6–2.5 Ga. This collision may be related to contemporary collision northwards between Eastern Madagascar–Western Dharwar Craton (WDC) and Eastern Dharwar Craton (EDC). Arcuate shaped N and S-verging thrusts, MBSZ-Mettur Shear and PCSZ-Gangavalli Shear, respectively across Cauvery Shear zone system (CSZ) in SGT also suggest that the WDC, EDC and SGT might have collided almost simultaneously during 2.6–2.5 Ga due to NW–SE directed compressional forces with CSZ as central core complex in plate tectonics paradigm preserving rocks of oceanic affinity. Gravity anomalies of schist belts of WDC suggest marginal and intra arc basin setting.The gravity highs of EGFB along east coast of India and regional gravity low over East Antarctica are attributed to thrusted high-density lower crustal/upper mantle rocks at a depth of 5–6 km along W-verging thrust, which is supported by high seismic velocity and crustal thickening, respectively. It may represent a collision zone at about 1.0 Ga between India and East Antarctica. Paired gravity anomalies in the central part of Sri Lanka related to high density intrusives under western margin of Highland Complex and crustal thickening (40 km) along eastern margin of Highland Complex with several arc type magmatic rocks of about 1.0 Ga in Vijayan Complex towards the east may represent collision between them with W-verging thrust as in case of EGFB. The gravity high of Sri Lanka in the central part falls in line with that of EGFB, in case it is fitted in Gulf of Mannar and may represent the extension of this orogeny in Sri Lanka.  相似文献   

10.
In the Dharwar tectonic province, the Peninsular Gneiss was considered to mark an event separating the deposition of the older supracrustal Sargur Group and the younger supracrustal Dharwar Supergroup. Compelling evidence for the evolution of the Peninsular Gneiss, a polyphase migmatite, spanning over almost a billion years from 3500 Ma to 2500 Ma negates a stratigraphic status for this complex, so that the decisive argument for separating the older and younger supracrustal groups loses its basis. Correlatable sequence of superposed folding in all the supracrustal rocks, the Peninsular Gneiss and the banded granulites, indicate that the gneiss ‘basement’ deformed in a ductile manner along with the cover rocks. An angular unconformity between the Sargur Group and the Dharwar Super-group, suggested from some areas in recent years, has been shown to be untenable on the basis of detailed studies, A number of small enclaves distributed throughout the gneissic terrane, with an earlier deformational, metamorphic and migmatitic history, provide the only clue to the oldest component which has now been extensively reworked.  相似文献   

11.
Geochemical studies on metavolcanic rocks of the Gadwal greenstone belt (GGB), eastern Dharwar craton, have documented several rock types that are indicative of subduction zone tectonics reflecting on the crustal growth processes in the Dharwar craton. The dominance of komatiites in the western Dharwar craton (WDC) and the arc volcanics in the eastern Dharwar craton (EDC) is an indication for the predominance of plume magmatism in the WDC and the intraoceanic subduction zone processes in EDC which together played a significant role in the growth and evolution of continental crust in the Dharwar craton. Boninites of GGB are high calcic type with high MgO (13–24 wt.%) and a characteristic MREE depleted U-shaped REE patterns whereas the basalts have flat REE patterns with no Eu anomalies. Nb-enriched basalts exhibit slightly fractionated REE patterns with high Nb (8–26 ppm) content compared to arc basalts. Adakites of GGB are Sr depleted with highly fractionated REE patterns and no Eu anomaly compared to rhyolites. The occurrence of boninites along with arc basalts, Nb-enriched basalts–basalt–andesite–dacite–rhyolites and adakites association in Gadwal greenstone belt indicate the intraoceanic subduction zone processes with a clear cut evidence of partial melting of metasomatized mantle wedge (boninites), melting of subducting slab (adakites) and residue of adakite–wedge hybridization (Nb-enriched basalts) which have played a significant role in the growth of continental crust in the Dharwar craton during the Neoarchaean.  相似文献   

12.
A newly recognized remnant of a Paleoproterozoic Large Igneous Province has been identified in the southern Bastar craton and nearby Cuddapah basin from the adjacent Dharwar craton, India. High precision U–Pb dates of 1891.1 ± 0.9 Ma (baddeleyite) and 1883.0 ± 1.4 Ma (baddeleyite and zircon) for two SE-trending mafic dykes from the BD2 dyke swarm, southern Bastar craton, and 1885.4 ± 3.1 Ma (baddeleyite) for a mafic sill from the Cuddapah basin, indicate the existence of 1891–1883 Ma mafic magmatism that spans an area of at least 90,000 km2 in the south Indian shield.This record of 1.9 Ga mafic/ultramafic magmatism associated with concomitant intracontinental rifting and basin development preserved along much of the south-eastern margin of the south Indian shield is a widespread geologic phenomenon on Earth. Similar periods of intraplate mafic/ultramafic magmatism occur along the margin of the Superior craton in North America (1.88 Ga Molson large igneous province) and in southern Africa along the northern margin of the Kaapvaal craton (1.88–1.87 Ga dolerite sills intruding the Waterberg Group). Existing paleomagnetic data for the Molson and Waterberg 1.88 Ga large igneous provinces indicate that the Superior and Kalahari cratons were at similar paleolatitudes at 1.88 Ga but a paleocontinental reconstruction at this time involving these cratons is impeded by the lack of a robust geological pin such as a Limpopo-like 2.0 Ga deformation zone in the Superior Province. The widespread occurrence of 1.88 Ga intraplate and plate margin mafic magmatism and basin development in numerous Archean cratons worldwide likely reflects a period of global-scale mantle upwelling or enhanced mantle plume activity at this time.  相似文献   

13.
Proterozoic terrains in South India and Madagascar provide important clues in understanding the Gondwanaland tectonics, especially the assembly of this mega-continent during the Pan-African period. The Archaean terrains in both Madagascar and India are characterized by N-S trending greenstone belts occurring within gneissose granitic rocks in the northern part. Extensive development of K-rich granitic rocks of ca. 2.5 Ga is also characteristic in both areas. Such a broad age zonation of younger Dharwar (ca 2.6–3.0 Ga) in the north and the older Sargur (ca 3.0–3.4 Ga) in the south as in South India remains to be identified in future studies from Madagascar. The occurrence of greenschist facies rocks in the northeastern part and higher grade rocks in most of other parts in the north-central terrain of Madagascar is comparable with the general tendency of increasing metamorphic grade from northwestern to southern areas ranging from greenschist to granulite facies in South India. The Proterozoic crystalline rocks in both continents show pronounced lithological similarity with the wide occurrence of graphite-bearing khondalite in association with charnockitic rocks. While the Archaean-Proterozoic boundary is well defined in southern India by the Palghat-Cauvery or the KKPT shear zones as recently identified, this boundary is ill-defined in Madagascar due to extensive Pan-African overprinting, as well as the development of the Proterozoic cover sequence, the Itremo Group. There is also a possible general correlation between the Mesoproterozoic cover sequences in Madagascar and India, such as between the Itremo Group of west-central Madagascar and the Kaladgi and Cuddapah sequences of South India. The Pan-African granulite facies metamorphism of ca. 0.5 Ga extensively developed in both India and Madagascar is generally comparable in intensity and extent. P-T conditions and P-T-t paths also appear comparable, with the general range of ca. 700–1000°C and 6–9 kb, and near-isothermal decompressional paths. A-type granite plutons and alkaline rocks including anorthosites and mafic plutonic rocks of ca. 500–800 Ma develop in both terrains, provide strong basis for the correlation of both terrains, and define a Pan-African igneous province within East Gondwanaland. Major shear zones in both continents are expected to play a critical role in the correlation, albeit are still poorly constrained. Detailed elucidation of the tectonic history of the shear zones, and the timing of various events along the shear zones would provide important constraints on the correlation of the two continental fragments.  相似文献   

14.
The geology of Goa Group: Revisited   总被引:1,自引:0,他引:1  
The supracrustals that constitute the Goa Group of Gokul et al. (1985) can be divided into two lithostratigraphic sequences namely the Barcem Group and the Ponda Group. The former comprises predominantly greenstones (metabasalts) and rests on a basement of the 3300–3400 Ma Anmode Ghat trodhjemite gneiss with a crudely developed quartz-pebble conglomerate at the base, and shows lithological similarities with the lower part of the Bababudan Group. The younger sequence is dominated by clastics, and is assigned to a new stratigraphic group formally termed the Ponda Group which is equivalent to the Chitradurga Group of the Dharwar Supergroup. This group rests on a basement of the 2700–2900 Ma Chandranath granite gneiss with a distinct unconformity marked by a polymict, granite-clast metaconglomerate. The conglomerate displays many similarities with the Talya conglomerate that occurs at the base of the Chitradurga Group. It is overlain by a psamolitic sequence which is followed in ascending order by the chemogenic sediments that host the BIF and by the deep water turbidite sequence (argillite-graywacke association) with intercalations of mafic volcanics. The supracrustal sequence is intruded by the Bondla layered mafic-ultramafic complex along a major shear zone (NW-SE) that largely controls the course of the northwesterly flowing tributary of River Mandovi. The late intrusive, Canacona potassic granite marks the culmination of the sedimentation in the Shimoga-Goa basin.  相似文献   

15.
杨柳坪矿区的基性-超基性岩主要呈层状产出,可以分为2类,即含矿的强蚀变超基性岩和不含矿的弱蚀变或未明显蚀变的基性岩,前者属于苦橄岩并具有科马提岩的地球化学特征(不具鬣刺结构,但可称为科马提质的苦橄岩),同时还具有高H2O^ 、高CO2的特点,并且H2O^ 、CO2越高矿化越强,表明成矿作用与热液蚀变有关,后者在地质特征和地球化学特征上与峨眉山玄武岩相似,成矿元素含量正常。  相似文献   

16.
The late Archaean Shimoga schist belt in the Western Dharwar Craton, with its huge dimensions and varied lithological associations of different age groups, is an ideal terrane to study Archean crustal evolution. The rock types in this belt are divided into Bababudhan Group and Chitradurga Group. The Bababudhan Group is dominated by mafic volcanic rocks followed by shallow marine sedimentary rocks while the Chitradurga Group is dominated by greywackes, pillowed basalts, and deep marine sedimentary rocks with occasional felsic volcanics. The Nb/Th and Nb/La ratios of the studied metabasalts of the Bababudhan Group indicate crustal contamination. They were extruded onto the vast Peninsular Gneisses through the rifting of the basement gneiss. The Nb/Yb ratios of high-magnesium basalts and tholeiitic basalts of Chitradurga Group suggest the enrichment of their source magma. Based on the flat primitive mantle-normalized multi-element plot with negative Nb anomalies and Th/Ta-La/Yb ratios, the high-magnesium basalts and tholeiitic basalts are considered to have erupted in an oceanic plateau setting with minor crustal contamination. The high-magnesium basalts and tholeiitic basalts formed two different pulses of same magma type, in which the first pulse of magma gave rise to high-magnesium basalts which were derived from deep mantle sources and underwent minor crustal contamination en route to the surface, while the second pulse of magma gave rise to tholeiitic basalts formed at similar depths to that of high-magnesium basalts and escaped crustal contamination. The associated lithological units found with the studied metavolcanic rock types of Bababudan and Chitradurga Groups of Dharwar Supergroup of rocks in Shimoga schist belt of Western Dharwar Craton confirm the mixed-mode basin development with a transition from shallow marine to deep marine settings.  相似文献   

17.
The Archaean Karnataka craton of southern India contains Eastern and Western crustal blocks (separated by a major thurst) in which Sargur Schists occur as lenses within tonalitic Peninsular Gneisses. The Schist complex comprises pelites, quartzitic psammites, carbonates and calc-silicates, iron formations, and basic rocks, and thus provides many mineral assemblages ideal for the calculation of PT conditions. With their gneisses the Sargur rocks are unconformably overlain by the Dharwar greenstone belts, and are generally thought to be older than 3,000 my.In the Western block maximum metamorphic conditions are given by meta-basic rocks as 790±50° C and 13±2 kb, but adjacent meta-sediments give a pressure of 9 kb, suggesting that the differences in P and T recorded in this block mark a polychronic metamorphic geotherm related to the exhumation of the terrain by uplift and erosion. In the eastern block maximum temperatures were in the range 750°-850° C and maximum pressures were 7 kb. The rocks of the two blocks were sampled 100 km apart, and thus there was probably a regional pressure difference between the two blocks caused by differentiated crustal thickening prior to or during metamorphism.The shape of the geotherm from the Western block shows near-isothermal decompression over 20 km. Our data suggest that during Sargur metamorphism maximum crustal thicknesses were in excess of 45 km and that there was a minimum difference of 20 km in crustal thickness between the Eastern and Western blocks.  相似文献   

18.
The Dharwar craton in the southern Indian shield has a wide distribution of volcano-sedimentary sequences surrounded by a vast gneissic complex, both of which have been intruded by younger granites. A gravity anomaly map of this craton, compiled from all the available data, is analysed here to study the structures and depths of the greenstone belts, the mode of granite emplacements and the greenstone-gneiss-granite associations in general. The anomaly map is a mosaic of well-defined gravity highs and lows characterizing the dense volcano-sedimentary sequences and exposed and/or concealed granites respectively. Gravity modelling indicates that the Shimoga belt has a limited depth range of only 3–4 km while the Chitradurga and Sandur belts have greater depths of over 10 km. The structures inferred for the Dharwar formations are alternating bands of synclines, filled with dense schistose rocks, separated by anticlinal ridges of gneisses and granites.  相似文献   

19.
The geochemistry and isotope systematics of Archean greenstone belts provide important constraints on the origin of the volcanic rocks and tectonic models for the evolution of Archean cratons. The Kam Group is a approximately 10-km-thick pile of submarine, tholeiitic mafic, and subordinate felsic volcanic rocks erupted between 2712 and 2701 Ma that forms the bulk of the Yellowknife greenstone belt in the dominantly granite-metasedimentary Slave Province. Mafic rocks range from Normal-mid-ocean range basalt-like basalts to slightly light-rare-earth-element-enriched (LREE-enriched) but Nb-depleted basaltic andesites and andesites, whereas dacitic to rhyodacitic felsic rocks are strongly LREE-enriched and highly depleted in Nb. The varepsilonTNd range from +5 to -3 in the mafic to intermediate rocks and from 0 to -5.5 in the felsic rocks. The varepsilonTNd decreases with increasing La/Sm, SiO2 and decreasing Nb/La, suggesting that as the mafic magmas evolved they were contaminated by older basement rocks. Gneissic granitoids >2.9 Ga in age, found at the base of the Kam Group, have varepsilonTNd between -6 and -9 and are excellent candidates for the contaminant. The geochemical and isotopic data, combined with the submarine eruptive setting and field evidence for existing continental basement, support a continental margin rift model for the Kam Group. Similar geochemical-isotopic studies are required on other Slave greenstone belts in order to test evolutionary models for the Slave Province.  相似文献   

20.
Paleoarchean granulite-facies metasedimentary rocks (quartzites, garnet quartzites, garnet-pyroxene gneisses, pyroxene-magnetite and magnetite quartzites) attributed to the Dniester-Bug Group of the Ukrainian Shield were studied. On the basis of geochemical data, including REE, the primary composition of these rocks was reconstructed as association of Fe-rich sandstones and sublitharenites, Fe-shales, and BIFs. This sedimentary association is similar to the rocks of other ancient greenstone belts and ascribed to the Algama-type iron formation. The sum of Al2O3, CaO, Na2O, and TiO2, high Zr contents (>100 ppm in quartzites), and the presence of detrital zircon grains of different ages are consistent with the terrigenous nature of sedimentary rocks. The Sm/Nd, Ti/Zr, Sc/Zr, and Ni/Zr ratios indicate the predominance of granitoid rocks in the source areas. The elevated Cr contents suggest that, in addition to granitoids, the source area contained ultramafic rocks. Geochemical characteristics, such as Fe/Mn ratio, low REE contents, and variations of REE versus the sum of Ni, Co, and Cu testify that sedimentation occurred under shallow-water conditions on the continent or its slope, similarly as the formation of ancient (3.5–3.2 Ga) basalt-komatiitic series intercalated with sedimentary rocks in the Pilbara Craton. The age of supracrustal rocks of the Dniester-Bug Group was constrained within the time interval of 3.4–3.2 Ga on the basis of U-Pb zircon dating and determination of Nd isotope composition. The DM model age of quartzites varies from 3.37 to 3.5 Ga. Sedimentary rocks together with volcanic rocks represent the oldest supracrustal association of the East European Platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号