首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper derives a notional future carbon budget for UK agriculture, land use, land use change and forestry sectors (ALULUCF). The budget is based on a bottom-up marginal abatement cost curve (MACC) derived for a range of mitigation measures for specified adoption scenarios for the years 2012, 2017 and 2022. The results indicate that in 2022 around 6.36 MtCO2e could be abated at negative or zero cost. Furthermore, in the same year, over 17% of agricultural GHG emissions (7.85 MtCO2e) could be abated at a cost of less than the 2022 Shadow Price of Carbon (£34 (tCO2e)???1). The development of robust MACCs faces a range of methodological hurdles that complicate cost-effectiveness appraisal in ALULUCF relative to other sectors. Nevertheless, the current analysis provides an initial route map of efficient measures for mitigation in UK agriculture.  相似文献   

2.
3.
4.
The Greenhouse Gas Inventory for the United Kingdom currently uses a simple carbon-flow model, CFLOW, to calculate the emissions and removals associated with forest planting since 1920. Here, we aim to determine whether a more complex process-based model, the BASic FORest (BASFOR) simulator, could be used instead of CFLOW. The use of a more complex approach allows spatial heterogeneity in soils and weather to be accounted for, but places extra demands on uncertainty quantification. We show how Bayesian methods can be used to address this problem.  相似文献   

5.
Annex I Parties may receive credits or debits from Land Use, Land Use Change and Forestry (LULUCF) activities, contributing to achieving individual emission reduction targets. In the Durban climate negotiations, Parties agreed new LULUCF accounting rules for the second commitment period of the Kyoto Protocol (CP2). By using these new rules, this paper presents key differences among Parties at the minimum (assuming no additional action) and potential (assuming additional actions) contribution of the forest-related LULUCF activities in achieving the pledges for 2020. Overall, the potential contribution of LULUCF is relatively modest (up to about 2 % of 1990 emissions) for the EU, the Annex I Parties likely joining the CP2, and for the Annex I Parties that joined the CP1 as a whole. However, for specific Parties, LULUCF can make a substantial contribution to achieving the pledges. For New Zealand, for instance, the potential contribution of future LULUCF credits may equal 33 % of its 1990 emission level. For Australia, the pledges are expressed relative to 2000 emission levels including LULUCF emissions. Given that LULUCF emissions have strongly declined between 1990 and 2000, and a further decline in foreseen by 2020 (based on Australia’s projections), the minimum contribution of LULUCF to meet the Australian pledges appears to be about 19 % and 7 % relative to its 1990 and 2000 emission level, respectively. A further 3 % potential contribution is estimated from additional actions.  相似文献   

6.
林业作为实施“基于自然的解决方案(NbS)”的重要领域和路径选择,在落实NbS行动中越来越受到各国政府和专家学者的广泛支持。文中在回顾国内外NbS相关资料的基础上,总结分析了林业领域NbS的内涵和路径、国际和国内相关政策及已采取的措施,重点分析了林业NbS路径的减排潜力、成本与效益。从全球范围看,造林和再造林路径具有较高的技术减排潜力,而减少毁林和森林经营管理是相对更具有成本效益的增汇减排路径。中国对林业NbS的实践及科学研究等尚显不足,但已有的重大林业生态工程已经产生了显著的减排效益和经济效益。未来需要在林业NbS相关标准与计量体系建设、减排技术与经济潜力研究、激励与保障机制等政策研究,以及增强公众意识等方面进一步深化和发展。  相似文献   

7.
8.
This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a global cooling in the range of –0.06 to –0.22 °C, though this effect is not found to be detectable in observed temperature trends. We then include the effects of natural forcings (volcanic aerosols, solar insolation variability and orbital changes) and other anthropogenic forcings (greenhouse gases and sulfate aerosols). Transient model runs from the year 1700 to 2000 are presented for each forcing individually as well as for combinations of forcings. We find that the UVic Model reproduces well the global temperature data when all forcings are included. These transient experiments are repeated using a dynamic vegetation model coupled interactively to the UVic Model. We find that dynamic vegetation acts as a positive feedback in the climate system for both the all-forcings and land cover change only model runs. Finally, the biogeochemical effect of land cover change is explored using a dynamically coupled inorganic ocean and terrestrial carbon cycle model. The carbon emissions from land cover change are found to enhance global temperatures by an amount that exceeds the biogeophysical cooling. The net effect of historical land cover change over this period is to increase global temperature by 0.15 °C.  相似文献   

9.
Many global land change scenarios are driven by demand for food, feed, fiber, and fuel. However, novel demands for other ecosystem services give rise to nexus issues and can lead to different land system changes. In this paper we explore the effects of including multiple different demands in land change scenarios. Our reference scenario is driven by demands for crop production, ruminant livestock production, and provisioning of built-up area. We then compare two alternative scenarios with additional demands for terrestrial carbon storage and biodiversity protection, respectively. These scenarios represent possible implementations of globally agreed policy targets. The simulated land system change scenarios are compared in terms of changes in cropland intensity and area, as well as tree and grassland area changes. We find that the carbon and biodiversity scenarios generally result in greater intensification and less expansion of cropland, with the biodiversity scenario showing a stronger intensification effect. However, the impact of setting the targets impacts different world regions in different ways. Overall, both scenarios result in a larger tree area compared to the reference scenario, while the carbon scenario also yields more grassland area. The land systems simulated while accounting for these additional demand types show strong patterns of specialization and spatial segregation in the provisioning of goods and services in different world regions. Our results indicate the relevance of including demands for multiple different goods and services in global land change assessments.  相似文献   

10.
This paper introduces, explains, and describes methods for addressing the issues of permanence, leakage, and additionality (PLA) of agricultural soil carbon sequestration (ASCS) activities at the project level. It is important to cast these as project-level issues, because they relate to the integrity and consistency of using location-specific ASCS projects as an offset against GHG emissions generated in other sectors (e.g., energy). The underlying objective is to understand and quantify what the net carbon benefits of an ASCS project are once we account for the fact that (1) the sequestered carbon may be stored impermanently, (2) the project may displace emissions outside the project boundaries (leakage), and (3) the project’s carbon sequestration may not be entirely additional to what would have occurred anyway under business-as-usual (no project) conditions. This article evaluates methods for identifying and estimating PLA and gauges the potential magnitude of these effects on the economic returns to a project. This work reflects ongoing collaborative efforts of the authors and Bruce McCarl (Texas A&M University), Allan Sommer, Jui-Chen Yang, and Laurel Clayton (RTI International), Sandra Brown (Winrock International), Ken Andrasko and Ben DeAngelo (US EPA), and various participants in the World Resources Institute/World Business Council workgroup to develop GHG project reporting protocols. All opinions, errors and omissions are those of the authors only.  相似文献   

11.
A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10?±?5 GtC y?1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside as protected areas, assuming 50 % in the tropics and 20 % in temperate and boreal forests; (3) forests difficult to access due to steep terrain; (4) wood use for other purposes such as timber and paper. This ‘top-down’ approach yields a WHS potential 2.8 GtC y?1. Alternatively, a ‘bottom-up’ approach, assuming more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y?1 available for carbon sequestration. We suggest a range of 1–3 GtC y?1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme at our estimated lower value of 1 GtC y?1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a moderate harvesting intensity of 1.2 tC ha?1 y?1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y?1, forests need to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity. We recommend WHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research.  相似文献   

12.
Soil carbon sequestration has been regarded as a cheap and cost-effective way to sequester carbon until other technologies to tackle climate change become available or more cost-effective. An assessment of the social desirability of a soil carbon sequestration policy requires the consideration of all associated social costs and benefits. Measures to re-accumulate carbon in soils have ancillary or co-effects on the environment that can be beneficial or detrimental to social welfare and few of which are traded in markets. This paper discusses issues related to the development of soil carbon sequestration policies into agri-environmental schemes and reports findings from an application of a choice experiment to elicit preferences and estimate benefits of a soil carbon programme in Scotland under consideration of co-effects on biodiversity and rural viability. Preferences for soil carbon based mitigation are found to be heterogeneous and related to beliefs about climate change and attitudes towards its mitigation. Benefit estimates suggest that including co-effects can significantly change the outcome of cost?Cbenefit tests. Implications for the development of climate change policies are discussed.  相似文献   

13.
14.
Integrated Assessment Models (IAMs) are an important tool to compare the costs and benefits of different climate policies. Recently, attention has been given to the effect of different discounting methods and damage estimates on the results of IAMs. One aspect to which little attention has been paid is how the representation of the climate system may affect the estimated benefits of mitigation action. In that respect, we analyse several well-known IAMs, including the newest versions of FUND, DICE and PAGE. Given the role of IAMs in integrating information from different disciplines, they should ideally represent both best estimates and the ranges of anticipated climate system and carbon cycle behaviour (as e.g. synthesised in the IPCC Assessment reports). We show that in the longer term, beyond 2100, most IAM parameterisations of the carbon cycle imply lower CO2 concentrations compared to a model that captures IPCC AR4 knowledge more closely, e.g. the carbon-cycle climate model MAGICC6. With regard to the climate component, some IAMs lead to much lower benefits of mitigation than MAGICC6. The most important reason for the underestimation of the benefits of mitigation is the failure in capturing climate dynamics correctly, which implies this could be a potential development area to focus on.  相似文献   

15.
利用NCAR大气环流模式CAM4.0,针对潜在植被和当代植被的分布情形进行了两组25 a的积分试验,探讨了土地利用变化对东亚地区地表能量平衡、水分循环和气候的可能影响.结果表明:以森林退化、农田迅速增加为主的当代土地利用变化,显著改变地表属性,使得东亚地区不同季节的地表反照率均明显增加,并显著改变东亚地区的冬、春季节的地表能量和水分循环.此外,当代大尺度土地利用变化对东亚地区大气环流也有一定影响,可引起东亚冬季风环流显著加强和东亚夏季较弱的偏南风异常.当代土地利用变化未能引起东亚地区近地面气温的显著变化,但可引起东亚北(南)部地区春季降水的显著增加(减小).  相似文献   

16.
Theoretical and Applied Climatology - The paper attempts to investigate the urban heat islands (UHIs) effect driven by land use land cover (LULC) change over Jimma city in southwestern parts of...  相似文献   

17.
This study investigates the carbon sequestration potential and co-benefits from policies aimed at retiring agricultural land in the Upper Mississippi River Basin, a large, heavily agricultural area. In addition to empirically measuring environmental co-benefits, we also compute economic transfers, which have sometimes been referred to as a co-benefit. Very little empirical work measuring the potential magnitude of these transfers has previously been undertaken. We compare and contrast alternative targeting schemes. We find that there are considerable amount of co-benefits and transfers and that the geographic distribution of co-benefits and transfers varies significantly with the specific benefit targeted. This implies that policy design related to targeting can have very important implications for both environmental conditions and income distributions in sub-regions. Issues related to policy design in the presence of co-benefits are considered. Senior authorship is shared equally between the first two authors. All views are those of the authors and not necessarily the funding agencies.  相似文献   

18.
情景是气候变化研究的重要工具。为了科学支撑气候变化科学评估和研究,2010年政府间气候变化专门委员会(IPCC)提出了共享社会经济路径(Shared Socioeconomic Pathways, SSPs)。作为从社会经济变化视角构建的气候情景,SSPs促进了气候变化科学基础、影响、脆弱性、风险、适应和减缓等学科的综合研究。本文介绍了SSPs情景研发与应用过程;阐述了全球和中国的人口经济、土地利用、能源和碳排放的模拟和预估主要成果;探讨了全球和中国碳排放路径及其与“双碳”目标的关系;并展望了SSPs应用前景。  相似文献   

19.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号