共查询到18条相似文献,搜索用时 62 毫秒
1.
常煜 《沙漠与绿洲气象(新疆气象)》2015,9(2):24-30
基于1991-2013年呼伦贝尔市汛期(6-8月)16站逐小时降水资料,分别定义各站点小时降水量的短时强降水阈值,同时利用经验正交函数(EOF)分析方法揭示呼伦贝尔市短时强降水变化特征。分析结果表明:短时强降水阈值、强降水事件以及汛期年平均总降水量和强降水雨强均呈现自西向东部偏南方向递增的空间分布,最强中心位于东南部阿荣旗,其形成与地形关系密切。短时强降水占汛期总降水量百分比低于1/5,短时强降水发生频率最低的地区出现84.2mm/h的强降水事件。短时强降水事件具有明显年代际变化, 21世纪以来,短时强降水事件发生频率表现增加趋势,空间分布表现为自东北向西南方向传播。7月下旬是短时强降水事件频发的时段。短时强降水有明显日变化特征,主峰出现在17时。EOF分析结果显示短时强降水事件在空间上表现出全市强降水具有同步性以及南部和北部地区反相位的特征。 相似文献
2.
西南地区短时强降水的气候特征分析 总被引:3,自引:2,他引:3
利用国家级地面气象站逐小时和日降水数据集资料,对西南地区短时强降水的气候特征进行了分析,并对近30年来强短时强降水和强暴雨的变化趋势进行了分析。结果表明:西南地区短时强降水主要集中在4-10月;三个高发区分别位于贵州东南部、四川盆地西南部和云南东南部,年均发生次数约5~6次;强度一般为20~30 mm·h~(-1),其中贵州30 mm·h~(-1)以上的小时降水强度所占比例最高,四川盆地西部边缘地区小时降水最强,超过80 mm·h~(-1),极端小时降水达123.1 mm·h~(-1);短时强降水具有明显的夜发性,02时左右为发生频次的峰值时段。从近30年西南地区超过第90百分位的强短时强降水与强暴雨的长期变化趋势来看,强短时强降水呈现频次增加、强度增强的变化趋势,强暴雨则变化不明显。 相似文献
3.
《湖北气象》2021,40(4)
利用2005—2018年贵州省84个国家气象站逐小时降水量资料,采用统计诊断分析方法,在区分量级前提下,结合地形特征,分析贵州1 h短时强降水和逐3 h降水的时空分布特征。结果表明:(1) 14 a中短时强降水共出现5 981站次,年均427.2站次,其空间分布与地形特征密切相关,整体呈现南多北少、东多西少的特征,贵州西南部“喇叭口”地形和东南部雷公山南侧“喇叭口”地形与河谷地形重叠区域为短时强降水高发区。短时强降水分级统计显示,99%的短时强降水集中在前两个雨强较小的等级,而R1h≥80 mm的短时强降水14 a只出现过5站次。各站点最大雨强空间分布与短时强降水的总站次数分布趋势较为一致,一般南部大于北部、中东部大于西部,局部存在差异。平均雨强整体呈现南强北弱的特征。(2)在2005—2013年期间,短时强降水站次数大多处于年均值(427.2站次)之下,2011年达到最低值275站次,2014年站次数骤然增加至564站次,2015年继续增加到最大值662站次,其后迅速回落到比年均值略高的位置小幅变化。各站点短时强降水的年际变化在高发区离散度较大,在贵州西北部低发区离散度较小;月际变化曲线呈单峰型,5—8月份是降水高发时段,6月达到峰值。短时强降水主要以单站出现的局地性降水为主,同一时次出现3站以上的情况很少,以6月最多;短时强降水最早出现旬数呈东早西晚、南早北晚的特征,结束旬数西早东晚,北早南晚;各站点短时强降水出现概率最大旬多数集中在第16—18旬(即6月);短时强降水日变化的时间曲线呈单峰型,21时至次日07时为高发时段,中午12时前后出现较少。短时强降水日变化的空间分布特征为傍晚到前半夜主要集中在贵州西部,而后半夜多出现在东部和南部地区,中午前后全省均较少出现。(3)逐3 h降水时空分布特征与R1h大体一致,局部存在一些差异。 相似文献
4.
利用重庆34个自动站1991—2015年逐小时降水资料,分别从降水比率、强降水占比、强降水频次、强降水事件、极大强降水及极端强降水阈值等方面分析了重庆时空分布特征。结果表明:(1)降水比率、强降水占比、强降水频次、强降水事件、极大强降水及极端强降水阈值在空间分布上具有一致性,高值区主要分布在东南部与西部,低值区主要位于东北部与中部。(2)降水比率、强降水占比、强降水频次及极大强降水在年变化上表现出波动起伏特征,且降水比率相对变化幅度较小,后三者表现出同相位的变化特点。在月变化上,降水比率呈双峰特征,后三者一致呈单峰特征。在日变化上,强降水高频次主要出现在03—05时,低频次主要是13—15时。(3)在强降水事件持续性上,强降水事件持续时间及其降水开始至最强降水时间的空间分布一致:高值区主要集中在东北部与东南部,而低值区主要分布在中部与西部。总体上看,持续时间越长,产生最强降水的时间越延后,且持续时间长的强降水事件主要产生在23时至次日04时。(4)第99、99.5、99.9百分位阈值与广义极值(GEV)分布函数5、10、20、50、100 a重现期阈值及极大强降水观测值在空间分布上与强降水具有一致性。 相似文献
5.
6.
利用1998-2020年三峡库区35个测站的小时降水资料,围绕近23年三峡库区小时强降水(≥20 mm·h-1)和小时极端强降水(≥50 mm·h-1)的总降水量、频次、强度等指标,分析极端降水发生的时空变化特征,并对比分析2010年前后三峡小时极端降水变化特征。结果表明:1998年三峡库区小时强降水与极端强降水发生次数与强度均异常偏多。若剔除该年,1999-2020年小时强降水与极端强降水发生总频次均无显著变化趋势。近23年,小时强降水平均每年每站发生3.8次,大部分站点年均发生3.0~5.0次;小时极端强降水年均发生5.5次,大部分站点年均发生<0.25次,中部山区的建始-宣恩一带年均发生次数较多。2010年后年平均小时强降水量减小了10.4 mm,减小的区域主要发生在三峡库区西部的重庆地区,该区域年平均减小15.5 mm;总体有31.4%的站点年平均小时强降水量与发生次数均有所增加,湖北中部的建始-来凤一带增幅较为明显,邻近5站的年强降水雨量平均增加16.1 mm;强降水小时雨强显示增加特征站点占48.6%,强降水小时雨强增加的范... 相似文献
7.
受东亚大气环流异常影响,1998年从5月中旬末开始,内蒙古自西向东先后进入汛期,汛期开始较往年提前近1个月,而且持续时间较长,汛情十分严峻。基于全区各台站历年汛期降水数据的统计分析和1998年降水的时空分布情况及其与历年的比较分析,今年的汛期可以划分为4个阶段:(1)5月中旬末至下旬,我区西部降大-暴雨,发生洪灾;(2)6月中旬至7月中旬,我区大部普降中-大雨、局部暴雨,中部发生洪涝灾害;(3)7月下旬至8月中旬,东部多次降大-暴雨,洪涝灾害异常严重;(4)8月下旬全区降雨渐少,汛情日缓。 相似文献
8.
利用加密自动气象观测站和国家气象观测站逐小时观测资料,分析了贵阳市2014-2019年汛期(4-9月)短时强降水时空分布特征。结果表明:贵阳市汛期短时降水呈现中部多,南北少的空间分布特征,大值中心位于清镇市中南部-观山湖区-白云区一带,该区域也是降水量最多,短时强降水贡献最大的区域。贵阳市汛期短时强降水集中在5-8月,其中6月最多,7月次之;一天中相对高值时段为23-03时、7-8时和20-21时,不同月份短时强降水频次日变化存在差异;持续时间≥3h的短时强降水过程集中在清镇市中南部-观山湖区-白云区-乌当区西部一带,次高频区域集中在花溪区中南部及修文县南部;根据影响系统不同,将区域≥20%的短时强降水分为4类,其中低涡切变型最多,占50.9%,冷锋低槽型占35.9%,梅雨锋型占9.4%,两高切变型占3.8%。 相似文献
9.
【目的】为分析铜仁区域短时强降水极端阈值及分布特征。【方法】利用铜仁区域内10个国家级台站2006—2022年3—11月逐日逐时降水资料,分别挑选1 h、2 h、3 h降水极值和次极值进行升序排列,基于第95个百分位的基本方法综合判定阈值,通过常规统计结果判定其分布特征。【结果】1 h降水量≥25 mm、2 h降水量≥40 mm、3 h降水量≥50 mm均可作为铜仁区域短时强降水的阈值。松桃是铜仁市短时强降水的高值中心,江口为次中心。西部5县和东部的万山6月份为短时强降水高发月份;东部松桃、碧江、玉屏7月为高发月份,江口以8月为主。铜仁区域短时强降水主要集中在5—8月,占总日数的84.4%,且67.3%的短时强降水以单站形式出现,短时强降水的局地性明显。铜仁发生短时强降水以夜间为主,江口最为明显,短时强降水夜间频数与短时强降水总频数之比达到84.9%,夜间短时强降水量与短时强降水总量之比达到86.5%,短时强降水较降水总量的夜雨性更为明显。【结论】该研究对深入了解铜仁区域短时强降水作了有益的探索,对科学制定强降水“三个叫应”指标和防灾减灾具有一定的指导意义。 相似文献
10.
蒋元华曾向红段丽洁汤亦豪吴浩 《干旱气象》2021,39(4):554-562
利用1980—2018年湖南省汛期96个地面气象观测站逐小时降水资料,以降水事件发生频率和降水量贡献率作为重要指标,分析湖南省汛期降水结构的时空演变特征.结果表明:(1)随历时增长,降水事件发生频率呈幂函数规律减小,降水量贡献率则呈线性增加趋势.短历时降水事件发生频率高,降水量贡献率低;长历时降水事件发生频率低,但降水... 相似文献
11.
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。 相似文献
12.
黑龙江省水稻生育阶段极端降水事件时空特征 总被引:1,自引:0,他引:1
利用百分位相对指数法,基于1971-2016年历史长序列的日降水资料,分析研究黑龙江省水稻生长季极端降水事件的阈值、频数和强度的时空特征。结果表明:黑龙江省极端降水事件阈值的高值区主要位于松嫩平原中南大部;极端降水事件主要集中于水稻生长季的5-9月,尤其是在水稻生殖生长的关键阶段,发生了大部分的极端降水事件;46年中,水稻种植区极端降水事件频数在18~72 d,极端降水事件频数总体呈经向分布特征,自东向西逐渐减少。7月下旬为中西部地区极端降水事件发生的高频时段,东部地区极端降水事件发生的高频时间段为5和9月,6月为极端降水事件发生的低频时段。近6年为极端降水事件频数最高、强度最大的一段时期,20世纪70年代则反之;极端降水事件频数和强度存在高度的相关性;在有雨量观测的小区域内,洪涝灾害事件基本可以被极端降水事件捕捉到,同时极端降水事件对洪涝灾害的指示性也较高。 相似文献
13.
横断山系云岭余脉点苍山东西侧小时降水特性对比分析 总被引:1,自引:1,他引:1
利用横断山系云岭余脉点苍山东西侧两个国家级气象台站2005—2012年逐小时降水量数据,详细分析东侧和西侧降水特性及差异。结果表明点苍山东西侧多年平均降水气候态相似,两侧年降水量接近,降水季节演变一致,但小时尺度的降水变化却存在明显差异:降水量和降水频次日变化在东侧以单峰型为主,西侧则双峰型变化显著;东西侧均存在后半夜降水量和降水频次高峰,主要由持续6h及以上的长时降水事件引起,且该高峰对总降水量的贡献东侧略大于西侧、持续时间东侧略长于西侧;西侧在午后至傍晚出现另一个降水量和降水频次高峰,一般由持续6h以下的中、短时降水事件造成;累积小时降水量和降水频次的最大值东西侧均于凌晨出现,出现时间东侧滞后于西侧3h;累积小时降水量的最小值东侧出现于傍晚、西侧则在正午发生,而累积小时降水频次的最小值东西侧均出现在正午前后。小时雨强日变化西侧较东侧强烈,尤其是夜间,西侧存在21时和03—04时大雨强时段,东侧雨强则缓慢变化于清晨07—08时达最大。这种小时降水特性的东西差异受点苍山地形影响,南北走向高大山脉的特殊地形使两侧下垫面辐射差异在傍晚达最大,辐射强的西侧容易形成降水量、降水频次、小时雨强的傍晚高峰。该区域降水特性的不均匀分布使其成为西南复杂地形区气候区域差异的典型代表。 相似文献
14.
西藏地区气象自动站夏季逐时降水资料特征分析 总被引:1,自引:0,他引:1
本文选用2008、2009年西藏地区具有代表性的5个自动站夏季逐时降水资料分析了两年间逐小时降水出现的频数和降水比率。结果表明:(1)各站的夏季逐时降水频率特征不尽相同但也有规律可循,既处在河谷地区的站点多夜雨,在相对平缓地区的站点逐时降水频率较为分散;(2)各站的夏季逐时降水比率呈短时集中现象,表现出高原地区多短时强对流天气的特征;(3)在有降水发生时次地面温度跟逐时降水频次和降水比率呈良好的负相关,相关系数分别为-0.58、-0.44;相对湿度跟逐时降水频次和降水比率呈良好的正相关,相关系数分别为0.56、0.46。 相似文献
15.
近32年长沙市短时强降水的气候变化研究 总被引:1,自引:0,他引:1
利用长沙市近32 a的1 h、3 h雨量资料,分析了长沙短时强降水年发生次数、月际分布、时段分布、极值分布等气候特征及1 h、3 h雨量极值趋势分析、突变检验。结果表明,长沙市1 h、3 h短时强降水年发生次数的多年平均值为4.4、3.7次,雨强平均为29.2 mm/h、14.8 mm/h。长沙发生1 h短时强降水高峰期为6-8月,3 h短时强降水高峰期为6-7月。1 h短时强降水容易发生在15-17时及20时等时段,3 h短时强降水容易发生在04-08时及01时等时段。1 h、3 h短时强降水年雨量极值大多出现在主汛期。年1 h雨量极值发生在7月最多,6、8月次之;年3h雨量极值发生在6月最多,7月次之。长沙市1 h、3 h短时强降水年雨量极值整体呈弱增加趋势,其长期趋势变化存在明显年代际变化特征和阶段性特征,无突变现象。 相似文献
16.
摘要:利用2010—2019年贵州地区2683个自动气象站逐时降水观测资料,在结合地形特征分析了贵州降水总体时空特征的基础上,从平均雨强和降水概率方面进一步研究了贵州各季日内降水的精细化特征。结果表明:(1)贵州年降水时长和年降水量空间分布有所差异,其中位于大娄山脉北侧的遵义赤水和习水地区则仅为降水时长的大值区;(2)四季降水时长分布主要受当季主要降水系统位置的影响,而平均降水强度则兼受地理条件的影响,偏向山脉的南麓;(3)在日内降水分布上,贵州四季都存在明显的夜雨现象,其中下半夜到凌晨(00—06 时)降水发生概率更大且强度更强,其中心有明显自西向东传播的特征;(4)短时强降水主要出现在春夏两季且向东传播明显,并主要在夜间到早晨。 相似文献
17.
With the development of urbanization, whether precipitation characteristics in Guangdong Province, China, from 1981 to 2015 have changed are investigated using rain gauge data from 76 stations. These characteristics include annual precipitation, rainfall frequency, intense rainfall(defined as hourly precipitation ≥ 20 mm), light precipitation(defined as hourly precipitation ≤ 2.5 mm), and extreme rainfall(defined as hourly rainfall exceeding the 99.9 th percentile of the hourly rainfall distribu... 相似文献
18.
利用内蒙古地区117站1991-2013年夏季(6-8月)逐时降水量资料,采用Gumbel极值方法确定内蒙古逐时极端降水阈值,研究内蒙古夏季逐时极端降水持续性和演变特征。结果表明:(1)内蒙古地区逐时极端降水阈值自西(5~10 mm)向东(40~55 mm)递增,但极端降水过程相对强度自西向东逐渐递减。内蒙古西部偏南地区、阴山山脉以南和大兴安岭东部极端降水过程持续时间较长,在7 h以上,其余地区极端降水过程持续时间较短,在6 h以内。(2)持续时间在1~3 h的极端降水过程发生次数最高,极端降水过程持续时间越短,降水量峰值出现前降水强度越大。极端降水持续时间4~6 h降水量偏离程度最大,1~3 h和7~12 h次之。(3)近23 a极端降水过程集中出现在7月下旬,峰值出现时刻由17:00滞后到20:00。1991-2010年极端降水过程偏少,可能是因为4~6 h和7~12 h极端降水过程次数偏少;进入2011-2013年,极端降水过程增加明显,主要与持续时间1~3 h、4~6 h和7~12 h极端降水过程同时增多有关。
相似文献