首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
利用曲靖非相干散射雷达2017—2018年春夏季观测数据首次分析了电离层日间150~450km电子温度的地方时与高度变化特征及其与电子密度的相关性.发现hmF2及以上的电子温度在日出日落时具有两个峰值,在11∶00—16∶00LT之间变化较小,高度越高午后上升的时间越早;从150km开始迅速增加,在约220km达到最大值,然后开始降低,在约300~350km达到最小值,最后单调上升;200km以下电子温度与电子密度成正相关(主要由热传导控制),200~450km之间存在明显的反相关(光电离过程占主导),电子-离子温度差与电子密度对数之间存在近似线性关系,电子温度逐日变化与光电离因子的变化趋势相似,这种相关性在中午与午后更明显;以上结果与其他非相干散射雷达观测和电离层模型计算结果基本一致,但也存在一些差别,需要结合更多数据深入分析.  相似文献   

2.
The model of calculations of electron density profiles in D-region is suggested. The model includes four positive ions, four negative ions and electrons. The effective rate coefficients were received from detailed models of ionization-recombination cycle. The calculations, which were made, and the comparisons with experimental data (Ne-profiles and their variations, absorption of radiowaves) have showed, that in general the model described the basic features of D-region parameters.  相似文献   

3.
For analyzing measurements of any kind, it is important to estimate the probability distribution of the measurement errors. When modelling the observations using least-squares fitting, the distribution of the errors plays a vital role in choosing the merit function to be minimized, as unnormally distributed errors (e.g. outliers, or displaying asymmetry around the mean) may substantially skew a least-squares fit of estimated model parameters. Using the CACTUS accelerometer data covering heights of 230–750 km, we will show that the statistical relationship between the commonly used semi-empirical models of neutral thermospheric density (MSIS, DTM) and the observed densities is consistent with lognormal distribution, i.e. the logarithm of the ratio of the measurements to the predictions is approximately normally distributed. This experimental fact may be applied in modelling the neutral thermospheric density. bezdek@asu.cas.cz  相似文献   

4.

本文利用MAVEN卫星Langmuir Probe and Waves(LPW)仪器的在轨电子浓度探测数据,研究了火星电离层电子浓度随太阳天顶角(Solar Zenith Angle,SZA)的变化以及昼夜电子浓度变化的异同.基于2014年至2017年期间MAVEN的电子浓度数据,我们发现:在200 km以下,白天电离层电子浓度主要受光化学平衡控制,由于白天光电离过程使得昼夜电子浓度差异较大,此时电离层昼夜传输能影响到的最大范围约在SZA=110°;而在200 km以上,白天电离层受输运过程控制,此时昼夜电子浓度差别较小,电离层昼夜间电子浓度变化较为缓慢.通过研究MAVEN在deep-dip(低高度深入探测)期间的电子浓度数据,我们发现火星磁场会显著影响夜间200 km以下的电子浓度分布结构,强磁场中闭合磁力线对电子沉降过程的阻碍作用使得在夜间该区域的电子浓度小于相邻区域.同时,通过比较deep-dip期间昼夜电子浓度随高度的变化,发现夜间电子沉降作用的影响可能主要集中在160 km以下.

  相似文献   

5.
Using EISCAT data, we have studied the behavior of the E region electron temperature and of the lower F region ion temperature during a period that was particularly active geomagnetically. We have found that the E region electron temperatures responded quite predictably to the effective electric field. For this reason, the E region electron temperature correlated well with the lower F region ion temperature. However, there were several instances during the period under study when the magnitude of the E region electron temperature response was much larger than expected from the ion temperature observations at higher altitudes. We discovered that these instances were related to very strong neutral winds in the 110–175 km altitude region. In one instance that was scrutinized in detail using E region ion drift measurement in conjunction with the temperature observations, we uncovered that, as suspected, the wind was moving in a direction closely matching that of the ions, strongly suggesting that ion drag was at work. In this particular instance the wind reached a magnitude of the order of 350 m/s at 115 km and of at least 750 m/s at 160 km altitude. Curiously enough, there was no indication of strong upper F region neutral winds at the time; this might have been because the event was uncovered around noon, at a time when, in the F region, the E × B drift was strongly westward but the pressure gradients strongly northward in the F region. Our study indicates that both the lower F region ion temperatures and the E region electron temperatures can be used to extract useful geophysical parameters such as the neutral density (through a determination of ion-neutral collision frequencies) and Joule heating rates (through the direct connection that we have confirmed exists between temperatures and the effective electric field).  相似文献   

6.
The variations of the upper atmosphere air density during geomagnetic disturbances have been investigated by many authors. According to the analysis of satellite orbits, in most cases an increase in the air density may be observed when the indexA phas a maximum. Having ionospheric data from stations in Europe, Asia and Australia we might be able to study the global behaviour of the electron density in theF 2 region during such geomagnetic disturbances when an increase of the air density had been observed. In these cases we found, that at the peak of the ionospheric layer, the electron density decreased 0–3 days later than theA pmaximum.  相似文献   

7.
曲靖非相干散射雷达功率剖面的初步观测与分析   总被引:4,自引:1,他引:4       下载免费PDF全文
介绍了非相干散射雷达功率剖面与电离层电子密度剖面之间的关系,给出了曲靖非相干散射雷达功率剖面的一些观测结果,结合电离层垂直探测数据,初步介绍了曲靖非相干散射雷达在夜间电离层波状扰动、低纬电离层异常区北驼峰位置、电离层电子密度日落增强和暴时变化等观测研究中的应用.本文结果丰富了对我国曲靖地区电离层空间天气特性的认识,显示了该雷达在我国低纬电离层空间天气观测研究中的良好应用前景.  相似文献   

8.
We present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earths ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20/30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at the first vibrational levels of N2 and O2 and the second level of O2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The resulting effect of N2(v > 0) and O2(v > 0) on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 1.5. The modelled electron temperature is very sensitive to the electron density, and this decrease in electron density results in the increase of the calculated daytime electron temperature up to about 580 K at the F2 peak altitude giving closer agreement between the measured and modelled electron temperatures. Both the daytime and night-time densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.  相似文献   

9.
During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event) and the occurrence of a stable auroral red (SAR) arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700–870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.  相似文献   

10.
对两种水体悬浮颗粒物吸收系数测定方法及相关计算进行对比研究.通过长江中下游湖泊典型藻类的实验室培养,利用T方法和T-R方法分别对藻类颗粒物、藻类泥沙混合悬浊液进行吸收系数测定.通过颗粒物光谱吸收系数与叶绿素a之间的相关性关系,对比了两种方法的测量稳定性.通过对不同比例的藻类和无机悬浮颗粒物(ISS)的混合悬浊液进行分析,获得了不同浊度水体悬浮物吸收光谱的变化情况.结果表明,在纯藻或者泥沙含量较少的水体进行颗粒物吸收系数光谱测定时,T方法和T-R方法均可以采用,并且均具有较高的测定精度.然而,在泥沙含量相对较高的浑浊水体,应尽量选取T-R方法进行颗粒物吸收光谱的测定,以提高测定精度.长江中下游浅水湖泊由于底泥易受风浪影响发生再悬浮,因此在颗粒物吸收系数光谱测定中,当水体中ISS含量超过30 mg/L时,应选择T-R方法.  相似文献   

11.
三峡水库蓄水前后长江中下游流量特征变化及其对造床作用的影响一直受到学者的关注.采用枝城等6个水文站日均流量资料,分别统计了各站流量的经验频率分布,检验了8种概率密度函数的适用性,并讨论了三峡水库蓄水前后流量频率分布特征与造床流量的关系.研究表明:长江中下游干流洪中枯各级流量的频率分布具有分段特性,无法用皮尔逊Ⅲ型或对数...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号