首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Analysis of the migration paths of stream water introduced into a transverse horizontal well is important to better understand the interactions between streams and aquifers. This paper presents a method of using particle-tracking techniques to evaluate the transport of stream water that infiltrates through a transverse horizontal well that runs transverse to a stream and extends from the stream banks. By conceptualizing the horizontal well as a discrete pipe network, MODFLOW is coupled with the pipe flow equations that govern the movement of water in the horizontal well, and this coupled seepage-pipe flow model is used to calculate the transient groundwater flow field. MODPATH is then used to record the locations of each of the water particles from the interface between the stream and the aquifer. The path lines, travel times, influence zones and the production of infiltrated stream water are determined to depict the migration process. The results suggest that the infiltrated stream water that originates from different stream transects located upstream and downstream from the horizontal well has different migration characteristics, as does the infiltrated stream water coming from different locations on the same stream transect. Eventually, the pumpage of the horizontal well consists partly of the infiltrated stream water and groundwater inflow from the upstream model boundary. The groundwater enters the horizontal well through the two end segments of the horizontal well, and the infiltrated stream water enters the middle segment of the well. The pumped water is still a mixture of infiltrated stream water and groundwater, even if the pumping lasts for a long period. The hydrochemistry of the infiltrated stream water cannot be simply used to evaluate the hydrochemistry of the water pumped from a transverse horizontal well.  相似文献   

2.
The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems. As groundwater flows through an aquifer, its composition and temperature may variation dependent on the aquifer condition through which it flows. Thus, hydrologic investigations can also provide useful information about the subsurface geology of a region. But because such studies investigate processes that follow under the Earth's shallow, obtaining the information necessary to answer these questions is not continuously easy. Springs, which discharge groundwater table directly, afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity (T) and storativity (S) are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.). In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole) that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery) is caused due to pumping of water from the well. Theis (1935) was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl) flow through an aquifer) and storativity (confined aquifer: S = bSs, unconfined: S = Sy), for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.  相似文献   

3.
The combined use of pumping and tracer test data enabled the derivation of equivalent average hydraulic conductivities (Kavg) for each test in a heterogeneous channelized alluvial aquifer, whereas K values of the preferential flow paths were two orders of magnitude higher. Greater and earlier drawdown was generally observed along preferential flow lines in a pumping test, within an array of 21 wells. The study aim was to characterize hydraulic properties of a channelized aquifer system in New Zealand by combining tracer and pumping test data. Estimates were able to be made of the percentage of highly permeable channels within the profile (~1.2%), effective porosity that reflected the maximum fraction of highly permeable channels within the aquifer (?eff–pc ~0.0038), and flows through highly permeable channels (~98%) and the sandy gravel matrix material (~2%). Using ?eff–pc, a tracer test Kavg value (~93 m/day) was estimated that was equivalent to pumping test values (~100 m/day), but two orders of magnitude smaller than K calculated solely from transport through permeable channels (Kpc ~8,400 m/day). Derived K values of permeable and matrix material were similar to values derived from grain size distribution using the Kozeny-Carman equation.  相似文献   

4.

Groundwater extracted from the Barthelasse Island aquifer, surrounded by the river Rhône (southeastern France), contributes to the drinking water supplies of 180,000 inhabitants. Owing to its location close to the river and the presence of two backwaters (oxbow lakes), the pumped groundwater is highly vulnerable to river pollution. A pumping test was conducted over 24 h to analyse and quantify the water exchange processes between the river, backwaters and groundwater. During the pumping test, isotopic (δ18O, δ2H and 222Rn), hydrochemical and hydrophysical monitoring of the groundwater was undertaken. Hydraulic heads were measured in pumping wells and at a piezometer located between the wells. Discrete water samples were collected at several observation points in the field, including the backwater and river. The results show mixing between three end-members, as defined by the deuterium excess and silica concentration, led by river Rhône water which had been affected by water–rock interactions over time and mixing with surface evaporated waters. The pumped water resulted from mixing between three end-members, all of which depended on the river Rhône but differed in terms of residence time in the system. Although the groundwater pumping wells are close to each other (<70 m) and have similar depths, the changes in the contributions from end-member waters at each well were different during the pumping test. Comparing isotopic tracers and geochemistry made it possible to quantify the different hydrological compartments that contribute to the groundwater pumped from the boreholes, which is critical in constructing a conceptual flow model.

  相似文献   

5.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

6.
The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Electronic Publication  相似文献   

7.
A 5-day detailed field investigation at a new RBF test well gallery in Embaba, Cairo, was conducted to evaluate the hydraulic setting and the behavior of iron and manganese. The well gallery consists of six vertical wells placed along a straight line parallel to the Nile riverbank. A low anisotropy factor for the aquifer (kf,h:kf,v) of 1.7 was determined by evaluation of a multi-step pumping test. Travel times between 11 days from the river toward the central wells and 22 days toward the outermost wells were estimated by groundwater flow modeling and particle tracking. The riverbed is rich in fine suspended sediments that have elevated iron and nitrogen concentrations. Depth-dependent water sampling during regular well operation indicates that the thick organic-, Fe- and Mn-rich riverbed is the primary source for ammonium, iron and manganese in the bank filtrate. Iron-rich groundwater flow from the opposite riverbank was identified as a secondary source of iron in the pumped water. The vertical position of the filter screen affects total travel times but would not reduce the portion of Mn-rich bank filtrate. The authors recommend continuous well operation for achieving stable water quality and lowering the risk of well clogging.  相似文献   

8.
A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5?×?10?17?<?k min <10?15?m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10?21?<?k?<?10?7?m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.  相似文献   

9.
This paper presents results of a small scale study that utilized particle-tracking techniques to evaluate transport of river water through an alluvial aquifer in a bank infiltration testing site in El Paso, Texas, USA. The particle-tracking survey was used to better define filtration parameters. Several simulations were generated to allow visualization of the effects of well placement and pumping rate on flow paths, travel time, the size of the pumping influence zone, and proportion of river-derived water and groundwater mixing in the pumping well. Simulations indicate that migration of river water into the aquifer is generally slow. Most water does not arrive at the well by the end of an 18-day pumping period at 0.54 m3/min pumping rate for a well located 18 m from the river. Forty-four percent of the water pumped from the well was river water. The models provided important information needed to design appropriate sampling schedules for bank filtration practices and ensured meeting adequate soil-retention times. The pumping rate has more effect on river water travel time than the location of the pumping well from the river. The examples presented in this paper indicate that operating the pumping well at a doubled distance from the river increased the time required for the water to travel to the well, but did not greatly change the capture zone.  相似文献   

10.
A numerical analysis of non-Darcian flow to a pumping well in a confined aquifer using the strong-form mesh-free (MFREE) method is described. This technique is targeted at problems that use advanced numerical approaches for modeling non-Darcian flow and it supports the assumption that the non-Darcian flow follows the Forchheimer equation. Interpolation functions including the multi-quadrics (MQ) basis function (containing shape factors q and α) and the Gaussian (EXP) basis function (with shape factor ω) were found to be important defining parameters which had significant influence on the numerical results. A series of numerical experiments revealed that when q?=?2 and α?=?0.1, the mesh-free method yielded good results and the range of 10?6?–?10?3 might be a good choice for the shape factor ω in the EXP basis function. A comparison between the strong-form MFREE method and the finite difference method was done; the results showed that the strong-form MFREE method was very effective for solving non-Darcian flow near a pumping well in a confined aquifer, and was favorable over the finite-difference method, which could undergo oscillation and converging problems at early times.  相似文献   

11.
The leaching processes along the flow path and over abstraction of the alluvial aquifer, the principal aquifer in delta Tokar, by the agricultural and domestic sectors and natural factors, have led to its salinization which may be due to interaction between geological formations and adjacent brackish and saline water bodies as well as seawater transgression. The main objectives of this study are to assess the hydrochemical characteristics of the groundwater and to delineate the locations and the sources of aquifer salinization. Water samples in the project area were chemically analyzed for major cations and anions at the laboratory by the standard analytical procedures. Chemical data and water level measurements were manipulated using GIS techniques for hydro chemical and flow direction maps and piper diagram for chemical facies and SPSS software for statistical analyses such as basic statistics (mean and standard deviation) and Spearman’s correlation matrix. The general flow direction of the groundwater is from Southwest towards East and Northeast. The hydraulic gradient is relatively steeper at the apex of the delta (0.06) and amounts to 0.005 at the distal part of the delta. The average transmissivity value of the water bearing formations was found to be about 4.5?×?103 m2/s, whereas, the storage coefficient was about 0.28. A hydrochemical study identified the locations and the sources of aquifer salinization and delineated their areas of influence. The investigation indicates that the aquifer water quality is significantly modified as groundwater flows from the southwestern parts of the study area, where the aquifer receives its water by lateral underflow from Khor Baraka flood plain, to the central and northeastern parts, with few exceptions of scattered anomalous concentration pockets in the deltaic plain. Significant correlation between TDS and/or EC with the major components of Na+, Cl?, and SO 4 ?2 ions is an indication of seawater influence on the groundwater salinity. Moreover, Cl?, SO 4 2? , and Na+ are predominant ions followed by Ca2+ and HCO 3 ? . Hence, four types of groundwater can be chemically distinguished: Na–Ca–SO4–Cl– facies, Na–Cl–SO4–HCO3– facies, Na–Ca–Mg–SO4–Cl–HCO3 facies, and Na–Ca–Mg–Cl–SO4 facies. The processes that govern changes in groundwater composition as revealed by chemical and statistical analyses are mainly associated with over-abstraction, biodegradation, marine intrusions, and carbonate saturation.  相似文献   

12.
A total of twenty-three water samples were collected in winter 2013 to assess groundwater quality in the Oued Rmel aquifer in the Zaghouan governate in Tunisia. These samples were subject to in-field measurements of some physico-chemical parameters (temperature, pH, and salinity), and laboratory analysis of major elements. Several parameters were used to assess the quality of water destined for irrigation, including electrical conductivity (EC) and sodium adsorption ratio (SAR). As part of this work, GIS was used to study spatial distributions of SAR, EC, residual sodium carbonate, sodium percentage (%Na), Doneen’s permeability index, Kelly’s ratio, and magnesium hazard and, therefore, evaluated the water quality of Oued Rmel (good, fair, or poor) regarding irrigation. The major ions most abundantly found in the waters of Oued Rmel were in the following order: Na+?>?Ca2+?>?Mg2+?>?K+ and Cl??>?SO42??>?HCO3. 56% of water samples from the Oued Rmel aquifer showed a low alkalinization risk, where SAR was lower than 10, 39% have a medium soil destabilization risks (10?<?SAR?<?18), and just 5% indicated high alkalinity hazards (SAR?>?26). Samples of water intended for irrigation showed a medium to high sodicity and alkalinization risk. It is expected that output may help in assessing the impacts of water quality of the Oued Rmel aquifer used for irrigation.  相似文献   

13.
A CO2-rich (>` 1 atm PCO2) travertine-depositing spring was studied to determine how it equilibrated, both chemically and isotopically, with conditions at the earth's surface. The water degassed rapidly along a 47 m section of its channel. Small quantities of siderite- and aragonite-rich precipitates were present along the first few meters and larger quantities of aragonite-rich precipitates were present in the later sections of the channel. CO2 degassing increased the δ13C of dissolved C from −9.7‰ near the spring orifice to +0.7‰ 47 m downstream. Along the first portion of the stream, the isotopic effect of degassing could be explained by a Rayleigh distillation process. Along the latter portion of the stream, photosynthesis may have enriched the dissolved C in 13C. The carbonate minerals appear to have formed in approximate isotopic equilibrium with the dissolved C. Older travertine samples from the terrace differ chemically, mineralogically, and isotopically from the more recently deposited minerals suggesting a possible alteration of the originally deposited material.  相似文献   

14.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

15.
A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10?5 m/d to 7.14 × 10?4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast–southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.  相似文献   

16.
Oxygen isotopic fractionation in the system quartz-albite-anorthite-water   总被引:1,自引:0,他引:1  
Oxygen isotopic fractionations have been determined between quartz and water, albite and water, and anorthite and water at temperatures from 300 to 825°C, and pressures from 1.5. to 25 kbar. The equilibrium quartz-feldspar fractionation curves can be approximated by the following equations: 1000ln αQ?PI = (0.46 + 0.55β)106T?2 + (0.02 + 0.85β) between 500 and 800°C 1000ln αQ?PI = (0.79 + 0.90β)106T?2 — (0.43 ? 0.30β) between 400 and 500°C where β is the mole-fraction of anorthite in plagioclase.Application of these isotopic thermometer calibrations to literature data on quartz and feldspar gives temperatures for some metamorphic rocks which are concordant with quartz-magnetite temperatures. Plutonic igneous rocks typically have quartz-feldspar fractionations which are substantially larger than the equilibrium values at solidus temperatures, indicating substantial retrograde exchange effects.  相似文献   

17.
This paper uses Visual MODFLOW to simulate potential impacts of anthropogenic pumping and recharge variability on an alluvial aquifer in semi-arid northwestern Oklahoma. Groundwater withdrawal from the aquifer is projected to increase by more than 50% (relative to 1990) by the year 2050. In contrast, climate projections indicate declining regional precipitation over the next several decades, creating a potential problem of demand and supply. The following scenarios were simulated: (1) projected groundwater withdrawal, (2) a severe drought, (3) a prolonged wet period, and (4) a human adjustment scenario, which assumes future improvements in water conservation measures. Results indicate that the combined impacts of anthropogenic pumping and droughts would create drawdown of greater than 12 m in the aquifer. Spatially, however, areas of severe drawdown will be localized around large-capacity well clusters. The worst impacts of both pumping and droughts will be on stream–aquifer interaction. For example, the projected aquifer pumpage would lead to a total streamflow loss of 40%, creating losing stream system regionally. Similarly, a severe drought would lead to a total streamflow loss of >80%. A post-audit of the model was also carried out to evaluate model performance. By simulating various stress scenarios on the alluvial aquifer, this study provides important information for evaluating management options for alluvial aquifers.  相似文献   

18.
In the Djerid-Nefzaoua region, southern Tunisia, about 80% of agricultural and domestic water supply is provided by the complex terminal (CT) aquifer. However, 20% of this demand is provided by other hydraulically connected aquifers, namely the continental intercalaire (CI) and the Plio-Quaternary (PQ). Overexploitation of the CT aquifer for agricultural practices has contributed to the loss of the artesian condition and the decline of groundwater level which largely increased the downward leakage from the shallow PQ aquifer. Excess irrigation water concentrates at different rates in the irrigation channels and in the PQ aquifer itself. Then, it returns to the CT aquifer and mixes with water from the regional flow system, which contributes to the salinization of the CT groundwater. A geochemical and isotopic study had been undertaken over a 2-years period in order to investigate the origin of waters pumped from the CT aquifer with an emphasis on its hydraulic relationships with the underlying and the overlying CI and PQ aquifers. Geochemistry indicates that groundwater samples collected from different wells show an evolution of the water types from Na-Cl to Ca-SO4-Cl. Dissolution of halite, gypsum and anhydrite-bearing rocks is the main mechanism that leads to the salinization of the groundwater. Isotopic data indicate the old origin of all groundwater in the aquifer system. Mixing and evaporation effects characterizing the CT and the PQ aquifers were identified using δ2H and δ18O relationship and confirmed by the conjunction of δ2H with chloride concentration.  相似文献   

19.
A high-spatial resolution study design was used to investigate the relationship between land use practices, stream physicochemistry, hydroclimate, and stream Escherichia (E) coli concentrations in a mixed-land-use watershed in the Appalachian region. Stream samples were collected daily from six monitoring sites and analyzed for total E. coli counts using an enzyme metabolism indicator method. Statistical comparison of E. coli concentration time series showed significant (p?<?0.05) differences between study sites. Although highest average E. coli concentrations were observed at two agricultural sites (534 and 582 colony-forming counts (CFU) per 100 mL, respectively), highest total loadings were observed within the receiving stream, with values increasing downstream (2?×?1012 and 4.2?×?1012 study total CFU for bracketed upstream and downstream sites, respectively). No single physical variable displayed a significant correlation (p?<?0.05) with observed E. coli concentration at every site. However, sites displayed different patterns of significant correlations (p?<?0.05) between E. coli concentration and both physicochemical (e.g. pH, dissolved oxygen saturation) and hydroclimate variables (e.g. streamflow and precipitation). Percent agricultural land cover was the only land use category that showed significant (p?<?0.04) correlation with study average E. coli concentrations, thereby emphasizing the importance of land use practices to stream pathogen regimes. Results validate the analytical method and provide high-resolution, detailed, quantitative characterizations of stream E. coli regimes, thereby supplying land and water resource managers with science-based information to advance management decisions and improve public health.  相似文献   

20.
Sediment and groundwater profiles were compared in two villages of Bangladesh to understand the geochemical and hydrogeological factors that regulate dissolved As concentrations in groundwater. In both villages, fine-grained sediment layers separate shallow aquifers (< 28 m) high in As from deeper aquifers (40-90 m) containing < 10 μg/L As. In one village (Dari), radiocarbon dating indicates deposition of the deeper aquifer sediments > 50 ka ago and a groundwater age of thousands of years. In the other village (Bay), the sediment is < 20 ka old down to 90 m and the deeper aquifer groundwater is younger, on the order of hundreds of years. The shallow aquifers in both villages that are high in As contain bomb-3H and bomb-14C, indicating recent recharge. The major and minor ion compositions of the shallow and deeper aquifers also differ significantly. Deeper aquifer water is of the Na+-HCO3- type, with relatively little dissolved NH4+ (76 ± 192 μmol/L), Fe (27 ± 43 μmol/L) and Mn (3 ± 2 μmol/L). In contrast, shallow aquifer water is of the Ca2+-Mg2+-HCO3- type, with elevated concentrations of dissolved NH4+ (306 ± 355 μmol/L), Fe (191 ± 73 μmol/L), and Mn (27 ± 43 μmol/L). In both villages, the quantity of As extractable from deeper aquifer sands with a 1 mol/L phosphate solution (0.2 ± 0.3 mg/kg, n = 12; 0.1 ± 0.1 mg/kg, n = 5) is 1 order of magnitude lower than P-extractable As from shallow deposits (1.7 ± 1.2 mg/kg, n = 9; 1.4 ± 2.0 mg/kg, n = 11). The differences suggest that the concentration of P-extractable As in the sediment is a factor controlling the concentration of As in groundwater. Low P-extractable As levels are observed in both deeper aquifers that are low in As, even though there is a large difference in the time of deposition of these aquifers in the two villages. The geochemical data and hydrographs presented in this study suggest that both Holocene and Pleistocene deeper aquifers that are low in As should be a viable source of drinking water as long as withdrawals do not exceed recharge rates of ∼1 cm/yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号