首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Seismic microzoning of Prague was performed using geological data and seismic response (ground shaking) computations. The Prague territory was covered by a square grid, each square 250 m×250 m being characterized by a simplified geological cross-section from the Earth's surface to the bedrock boundary. The data were obtained from detailed engineering-geological maps 1:5000. The geological cross-sections were transformed into a set of layered models, specified by the thicknesses of individual layers and corresponding compressional and shear-wave velocities, densities and parameters of the causal absorption. The seismic responses were computed by the matrix method. The main amplitude and frequency characteristics of the responses are demonstrated in the form of microzoning maps. The maps do not depend on the specific type of seismic excitation. They make it possible to predict the relative amplification of P and S waves, with respect to the bedrock outcrop, all over the city.  相似文献   

2.
The safety of structures built in seismic regions can be improved by energy absorbing devices. Passive isolation systems such as base isolators are suitable for low-rise structures, but they provide only a partial solution to the problem. Three active control techniques for reducing the dynamic response of machine supporting foundations using various control strategies are presented. The active tendon, active mass damper and active base control systems are studied for active control of machine foundations in seismic regions. Numerical simulations show that active control can reduce the dynamic response of turbomachine foundations under seismic loads. This reduction in dynamic response can limit damage to power plants during earthquakes and restore their operation in a short time.  相似文献   

3.
In the analysis of structural foundations for seismic loads, it is customary to distinguish two types of soil-structure interaction effect: kinematic interaction (or wave passage), and inertial interaction. The former refers to the phenomenon of wave scattering, which occurs because the foundation is much stiffer than the surrounding soil and cannot accommodate to its distortions. Inertial interaction, on the other hand, is caused by feedback of kinetic energy of the structure into the soil. This paper is concerned only with the first phenomenon. The rigorous analysis of rigid, embedded foundations subjected to seismic disturbances requires, in general, substantial computational effort. Indeed, a typical analysis would normally require models with finite elements and/or boundary elements. Although such methods may be used to find an accurate solution to the problem of kinematic interaction, their use is not always warranted, given the many uncertainties involved and the multitude of assumptions that must be considered. Hence, approximate solutions are attractive for this problem. One such approximate method is the remarkably simple algorithm proposed by Iguchi.3 This paper presents first an appraisal of this method by way of a comparison with accurate numerical solutions for cylindrical foundations; next the algorithm is applied to rectangular (prismatic) foundations. It is found that Iguchi's method gives results that are adequate for engineering purposes, even if not entirely accurate.  相似文献   

4.
The seismic behaviour of caisson foundations supporting typical bridge piers is analysed with 3D finite elements, with due consideration to soil and interface nonlinearities. Single-degree-of freedom oscillators of varying mass and height, simulating heavily and lightly loaded bridge piers, founded on similar caissons are studied. Four different combinations of the static ( $\text{ FS }_\mathrm{V}$ FS V ) and seismic ( $\text{ FS }_\mathrm{E}$ FS E ) factors of safety are examined: (1) a lightly loaded ( $\text{ FS }_\mathrm{V}= 5$ FS V = 5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson, (2) a lightly loaded seismically over-designed ( $\text{ FS }_\mathrm{E} >1$ FS E > 1 ) caisson, (3) a heavily loaded ( $\text{ FS }_\mathrm{V} = 2.5$ FS V = 2.5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson and (4) a heavily loaded seismically over-designed caisson. The analysis is performed with use of seismic records appropriately modified so that the effective response periods (due to soil-structure-interaction effects) of the studied systems correspond to the same spectral acceleration, thus allowing their inelastic seismic performance to be compared on a fair basis. Key performance measures of the systems are then contrasted, such as: accelerations, displacements, rotations and settlements. It is shown that the performance of the lightly loaded seismically under-designed caisson is advantageous: not only does it reduce significantly the seismic load to the superstructure, but it also produces minimal residual displacements of the foundation. For heavily loaded foundations, however ( $\text{ FS }_{V} = 2.5$ FS V = 2.5 ), the performance of the two systems (over and under designed) is similar.  相似文献   

5.
In this study the efficacy of various ground motion intensity measures for the seismic response of pile foundations embedded in liquefiable and non-liquefiable soils is investigated. A soil-pile-structure model consisting of a two-layer soil deposit with a single pile and a single degree-of-freedom superstructure is used in a parametric study to determine the salient features of the seismic response of the soil-pile-structure system. A suite of ground motion records scaled to various levels of intensity are used to investigate the full range of pile behaviour, from elastic response to failure. Various intensity measures are used to inspect their efficiency in predicting the seismic demand on the pile foundation for a given level of ground motion intensity. It is found that velocity-based intensity measures are the most efficient in predicting the pile response, which is measured in terms of maximum curvature or pile-head displacement. In particular, velocity spectrum intensity (VSI), which represents the integral of the pseudo-velocity spectrum over a wide period range, is found to be the most efficient intensity measure in predicting the seismic demands on the pile foundation. VSI is also found to be a sufficient intensity measure with respect to earthquake magnitude, source-to-site distance, and epsilon, and has a good predictability, thus making it a prime candidate for use in seismic response analysis of pile foundations.  相似文献   

6.
We present the results of a probabilistic seismic hazard assessment and disaggregation analysis aimed to understand the dominant magnitudes and source-to-site distances of earthquakes that control the hazard at the Celano site in the Abruzzo region of central Italy. Firstly, we calculated a peak ground acceleration map for the central Apennines area, by using a model of seismogenic sources defined on geological-structural basis. The source model definition and the probabilistic seismic hazard evaluation at the regional scale (central Apennines) were obtained using three different seismicity models (Gutenberg–Richter model; characteristic earthquake model; hybrid model), consistent with the available seismological information. Moreover, a simplified time-dependent hypothesis has been introduced, computing the conditional probability of earthquakes occurrence by Brownian passage time distributions.Subsequently, we carried out the disaggregation analysis, with a modified version of the SEISRISK III code, in order to separate the contribution of each source to the total hazard.The results show the percentage contribution to the Celano hazard of the various seismogenic sources, for different expected peak ground acceleration classes. The analysis was differentiated for close (distance from Celano <20 km) and distant (distance from Celano >20 km) seismogenic sources. We propose three different “scenario earthquakes”, useful for the site condition studies and for the seismic microzoning study: (1) large (M=6.6) local (Celano-epicentre distance 16 km) earthquake, with mean recurrence time of 590 years; (2) moderate (M=5.5) local (Celano-epicentre distance 7.5 km) earthquake, with mean recurrence time of 500 years; and (3) large (M=6.6) distant (Celano-epicentre distance 24 km) earthquake, with mean recurrence time of 980 years.The probabilistic and time-dependent approach to the definition of the “scenario earthquakes” changes clearly the results in comparison to traditional deterministic analysis, with effects in terms of engineering design and seismic risk reduction.  相似文献   

7.
A study is made of the harmonic response of a rigid massless rectangular foundation bonded to an elastic half-space and subjected to the action of both external forces and obliquely incident plane seismic waves. The associated mixed boundary value problem is discretized and solved numerically. The results obtained indicate that the angle of incidence of the seismic wave has a marked effect on the nature and magnitude of the foundation response.  相似文献   

8.
Based on a pseudo-static approach, finite difference (FDM) numerical analyses have been performed aimed at evaluating the seismic effects on the ultimate bearing capacity of shallow strip foundations. In the specialised literature, such seismic effects are usually divided in two components, namely, a structure inertia and a soil inertia, which can be either considered together, or separately addressed and then superposed. Both of these inertia effects are investigated in this work. The results of a comprehensive numerical study are presented in—and critically compared to—the wide framework of available analytical solutions proposed in the literature in the last 30 years. The good agreement found between the numerical and the analytical approaches is pointed out, thus providing further evidence of the reliability of some available and widespread solutions. The possibility of superposition of the two inertia effects is investigated. It is found that in some cases the soil inertia may play a significant role in the seismic capacity of the system, and that simple one-constant equations can be readily used in foundation design to estimate the reduction in bearing capacity (namely, factors e i , e k ) deriving from the two inertia effects.  相似文献   

9.
The dynamic response of a finite number of flexible surface foundations subjected to harmonic incident Rayleigh or SH waves is presented. The foundations are assumed to be resting on an elastic half-space. The results show that the foundation stiffness has a marked effect on the vertical response, while there is only a minor effect on the horizontal displacements. In general, the dynamic response decreases with increasing foundation stiffness. In cases of Rayleigh wave incidence, the existence of an adjacent foundation generates a certain amount of horizontal response in the direction perpendicular to the incident wave and subsequently causes the system to undergo a torsional motion; while in cases of horizontally incident SH waves, a vertical response has been observed and its magnitude is comparable to the response in the direction of the incident wave.  相似文献   

10.
Macroseismic intensity data plays an important role in the process of seismic hazard analysis as well in developing of reliable earthquake loss models. This paper presents a physical-based model to predict macroseismic intensity attenuation based on 560 intensity data obtained in Iran in the time period 1975–2013. The geometric spreading and energy absorption of seismic waves have been considered in the proposed model. The proposed easy to implement relation describes the intensity simply as a function of moment magnitude, source to site distance and focal depth. The prediction capability of the proposed model is assessed by means of residuals analysis. Prediction results have been compared with those of other intensity prediction models for Italy, Turkey, Iran and central Asia. The results indicate the higher attenuation rate for the study area in distances less than 70 km.  相似文献   

11.
A multi-parametric study of empirical relationships between macroseismic data and magnitude is presented for the Italian region by the analysis of a new extended data set concerning 146 earthquakes. The available magnitude determinations include all of the most intense earthquakes which occurred in Italy in the last century and have been obtained by an accurate revision of original instrumental data. Intensity data have been revised and upgraded on the basis of the most recent studies: only local intensities directly documented have been used. Macroseismic determinations ofM s ,m B andM wa magnitudes have been performed. The empirical relationships between maximum felt intensity (I max ) and magnitude have been determined by the use of a distribution-free approach and a linear regression analysis. This last parameterization allows for the explanation of more than 60% of the variation in magnitude. In order to improve these results, the linear dependence between magnitude,I max and average distances (in logarithm) corresponding to fixed attenuation values has been explored. The comparison between instrumental magnitudes and corresponding macroseismic estimates obtained from empirical relationships shows that the respective uncertainties are comparable.  相似文献   

12.
The applicability of the travel-time seismic tomography algorithm with the adaptive environment parameterization for the engineering and archaeological studies is investigated. The investigation object is the environment under the ruins of the St. Onuphrius Church at the Big Solovetsky Island. Experimental geometry for the tomography studies is designed and the data are acquired and processed. The goal is to study in detail the church basement and underlying geological environment structure that can not be recovered with other geophysical methods. The synthetic experiments are performed using the standard checkerboard tests with the cells of 2, 3, and 4 m in size in order to estimate the adequacy of the results obtained. The recovered three-dimensional velocity pattern is in a good agreement with the data on the church and archaeological information.  相似文献   

13.
A boundary element formulation of the substructure deletion method is presented for the seismic analysis of the dynamic cross-interaction between multiple embedded foundations. This approach is particularly suitable for three-dimensional foundations of any arbitrary geometrical shape and spatial location, since it requires only the discretization of the foundations’ surfaces. The surrounding soil is represented by a homogeneous viscoelastic half-space while the foundations are assumed to be rigid and subjected to incoming SH-, P-, and SV-waves arbitrarily inclined in both the horizontal and vertical planes. The proposed methodology is tested for the case of two identical embedded square foundations for different values of the foundations’ embedment and distance. The effects of the cross-interaction are outlined in the components of the impedance matrix and of the foundation input motion. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Prephotographic depictions of earthquakes can contain important information on the types and amount of damage due to a large earthquake in historic times. Care must be used in evaluating such depictions because some are more accurate than others, and many depictions contain little that is of value in making estimates of seismic intensity. Depictions of two earthquakes, in 1692 at Jamaica and in 1843 at Guadeloupe, illustrate the utility of depictions in intensity estimation. A depiction of the scene at Port Royal in Jamaica of the 1692 shock suggests that the major damage was caused by soil slumping and a tsunami, with the ground shaking itself probably only having been about MMI VII. Two depictions of Pointe-à-Pitre at Guadeloupe after the 1843 event contain evidence that the town was damaged by strong ground shaking as well as by major soil failures. The ground shaking here was probably MMI VII–IX. These and other pictures are being assembled for a monograph of prephotographic earthquake depictions in the Americas.  相似文献   

15.
对欧洲98地震烈度表(EMS—98)作了筒要介绍,内容包括不同建筑结构类型的易损性等级、钢混建筑的破坏等级、砖石建筑的破坏等级、描述性术语的定量意义、欧洲98地震烈度表中考察的影响因素及烈度表全文。  相似文献   

16.
A simplified indirect boundary element method is applied to compute the impedance functions for L-shaped rigid foundations embedded in a homogeneous viscoelastic half-space. In this method, the waves generated by the 3D vibrating foundation are constructed from radiating sources located on the actual boundary of the foundation. The impedance functions together with the free-field displacements and tractions generated along the soil–foundation interface are used to calculate the foundation input motion for incident P, S and Rayleigh waves. This is accomplished by application of Iguchi's averaging method which, in turn, is verified by comparison with results obtained rigorously using the relation between the solutions of the basic radiation (impedance functions) and scattering (input motions) problems. Numerical results are presented for both surface-supported and embedded foundations. It is shown how the seismic response of L-shaped foundations with symmetrical wings differs from that of enveloping square foundations. The effects of inclination and azimuth of the earthquake excitation are examined as well. These results should be of use in analyses of soil–structure interaction to account for the traveling wave effects usually overlooked in practice.  相似文献   

17.
The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting bridge piers: (1) obtaining the dynamic stiffness (“springs” and “dashpots”) of the foundation; (2) computing the kinematic response; (3) determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil. Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors from some frequently employed simplifications are illustrated.  相似文献   

18.
为了研究强震区桥梁跨活动断层时,桩基在地震中的动力响应,以海文大桥为工程背景,利用Midas GTS有限元软件建立其强震区桩-海床岩土体-断层耦合作用的数值模型,研究不同强度(0.20g~0.60g)的50年超越概率为10%的地震波(后文简称5010地震波)作用下,桥梁桩基加速度、位移、弯矩及剪力的动力时程响应特性。结果表明:上部大厚度松散土体对桩身加速度有放大及滤波作用,而基岩对桩身加速度几乎不产生作用;断层上、下盘桩基础的桩顶水平位移随输入地震动强度的增大而增大,但达到振幅的时刻一致;上、下盘桩基础桩顶竖向位移时程响应都在50 s以后产生永久沉降;桩身最大弯矩截面处时程响应均在40 s以后产生永久弯矩;应重点考虑上部覆盖层软硬土体界面和基岩界面的抗弯承载力设计,及桩顶和基岩面附近的抗剪承载力设计;上盘桩基础按桩身加速度、弯矩、桩顶水平位移等动参数控制设计,下盘桩基础按动剪应力控制设计。  相似文献   

19.
幂函数剪切模量成层土非线性地震反应的半解析算法   总被引:1,自引:0,他引:1  
运用文献[1]所建议的动态应力一应变关系及其推广的Masing加卸载准则,考虑土料在地震等产生的不规则加载条件下的非线性滞回特征,将增量法与相应场地地震线性反应解析解[2]相结合,提出了该动力非线性方程的半解析时域算法,基于改进的一维剪切梁模型,对剪切模量是其深度的某一幂函数的成层非均质土层,建立了求解土体地震反应的非线性分析技术。针对文献[2]中的土层剖面,做了计算、分析和讨论。  相似文献   

20.
When analysing the seismic response of pile groups, a vertically‐incident wavefield is usually employed even though it does not necessarily correspond to the worst case scenario. This work aims to study the influences of both the type of seismic body wave and its angle of incidence on the dynamic response of pile foundations. To this end, the formulation of SV, SH and P obliquely‐incident waves is presented and implemented in a frequency‐domain boundary element‐finite element code for the dynamic analysis of pile foundations and piled structures. Results are presented in terms of bending moments at cap level of single piles and 3 × 3 pile groups, both in frequency and in time domains. It is found that, in general, the vertical incidence is not the most unfavourable situation. In particular, obliquely‐incident SV waves with angles of incidence smaller than the critical one, a situation in which the mechanism of propagation of the waves in the soil changes and surface waves appear, yield bending moments much larger than those obtained for vertically‐incident wavefields. It is also shown that the influence of pile‐to‐pile interaction on the kinematic bending moments becomes significant for non‐vertical incidence, especially for P and SV waves. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号