首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-dependent general relativistic equations of degenerate electrodynamics are solved numerically in order to study the mechanism of the electromagnetic extraction of the rotational energy of black holes. We performed a series of 2D runs for black holes with specific angular momentum, a , from 0.1 to 0.9 and for a monopole magnetic field assuming axisymmetry. In the inner region of the wind, the solution quickly settles to a steady state with an outgoing Poynting flux. In all cases the angular velocity of the magnetic field lines is almost half the angular velocity of the black hole. Thus, at least for the configuration considered, the Blandford–Znajek mechanism operates near its maximum power output.  相似文献   

2.
In this paper we report the results of axisymmetric relativistic magnetohydrodynamic (MHD) simulations for the problem of a Kerr black hole immersed in a rarefied plasma with 'uniform' magnetic field. The long-term solution shows properties that are significantly different from those of the initial transient phase studied recently by Koide. The topology of magnetic field lines within the ergosphere is similar to that of the split-monopole model with a strong current sheet in the equatorial plane. Closer inspection reveals a system of isolated magnetic islands inside the sheet and ongoing magnetic reconnection. No regions of negative hydrodynamic 'energy at infinity' are seen inside the ergosphere and the so-called MHD Penrose process does not operate. However, the rotational energy of the black hole continues to be extracted via the purely electromagnetic Blandford–Znajek mechanism. In spite of this, no strong relativistic outflows from the black hole are seen to be developing. Combined with results of other recent simulations, our results signal a potential problem for the standard MHD model of relativistic astrophysical jets should they be found at distances as small as a few tens of gravitational radii from the central black hole.  相似文献   

3.
4.
5.
6.
The force-free limit of magnetohydrodynamics (MHD) is often a reasonable approximation to model black hole and neutron star magnetospheres. We describe a general relativistic force-free (GRFFE) formulation that allows general relativistic magnetohydrodynamic (GRMHD) codes to directly evolve the GRFFE equations of motion. Established, accurate and well-tested conservative GRMHD codes can simply add a new inversion piece of code to their existing code, while continuing to use all the already-developed facilities present in their GRMHD code. We show how to enforce the   E · B = 0  constraint and energy conservation, and we introduce a simplified general model of the dissipation of the electric field to enforce the   B 2− E 2 > 0  constraint. We also introduce a simplified yet general method to resolve current sheets, without much reconnection, over many dynamical times. This formulation is incorporated into an existing GRMHD code ( harm ), which is demonstrated to give accurate and robust GRFFE results for Minkowski and black hole space–times.  相似文献   

7.
8.
We study close encounters involving massive main-sequence stars and the evolution of the exotic products of these encounters as common-envelope systems or possible hypernova progenitors. We show that parabolic encounters between low- and high-mass stars and between two high-mass stars with small periastrons result in mergers on time-scales of a few tens of stellar free-fall times (a few tens of hours). We show that such mergers of unevolved low-mass stars with evolved high-mass stars result in little mass-loss  (∼0.01 M)  and can deliver sufficient fresh hydrogen to the core of the collision product to allow the collision product to burn for several million years. We find that grazing encounters enter a common-envelope phase which may expel the envelope of the merger product. The deposition of energy in the envelopes of our merger products causes them to swell by factors of ∼100. If these remnants exist in very densely populated environments  ( n ≳ 107 pc−3)  , they will suffer further collisions which may drive off their envelopes, leaving behind hard binaries. We show that the products of collisions have cores rotating sufficiently rapidly to make them candidate hypernova/gamma-ray burst progenitors and that ∼0.1 per cent of massive stars may suffer collisions, sufficient for such events to contribute significantly to the observed rates of hypernovae and gamma-ray bursts.  相似文献   

9.
10.
We present an internal shock model with external characteristics for explaining the complicated light curves of gamma-ray bursts. Shocks produce gamma-rays in the interaction between a precessing beam of relativistic particles and the interstellar medium. Each time the particle beam passes the same line of sight with the observer the interstellar medium is pushed outward. Subsequent interactions between the medium and the beam are delayed by the extra distance to be travelled for the particles before the shock can form. This results in a natural retardation and leads to an intrinsic asymmetry in the light curves produced for gamma-ray bursts. In addition, we account for the cooling of the electron–proton plasma in the shocked region, which gives rise to an exponential decay in the gamma-ray flux. The combination of these effects and the precessing jet of ultrarelativistic particles produces light curves that can be directly compared with observed gamma-ray burst light curves. We illustrate the model by fitting a number of observed gamma-ray bursts that are difficult to explain with only a precessing jet. We develop a genetic algorithm to fit several observed gamma-ray bursts with remarkable accuracy. We find that for different bursts the observed fluence, assuming isotropic emission, easily varies over four orders of magnitude from the energy generated intrinsically.  相似文献   

11.
We continue the study of the properties of non-radial pulsations of strange dwarfs. These stars are essentially white dwarfs with a strange quark matter (SQM) core. We have previously shown that the spectrum of oscillations should be formed by several, well-detached clusters of modes inside which the modes are almost evenly spaced. Here, we study the relation between the characteristics of these clusters and the size of the SQM core. We do so assuming that, for a given cluster, the kinetic energy of the modes is constant. For a constant amplitude of the oscillation at the stellar surface, we find that the kinetic energy of the modes is very similar for the cases of models with Log Q SQM=−2, −3 and −4, while it is somewhat lower for  Log Q SQM=−5  (here   Q SQM≡ M SQM/ M ; M SQM  and M are the masses of the SQM core and the star, respectively). Remarkably, the shape (amplitude of the modes versus period of oscillation) of the clusters of periods is very similar. However, the number of modes inside each cluster is strongly (and non-monotonously) dependent upon the size of the SQM core.
The characteristics of the spectrum of oscillations of strange dwarf stars are very different from the ones corresponding to normal white dwarfs and should be, in principle, observable. Consequently, the stars usually considered as white dwarfs may indeed provide an interesting and affordable way to detect SQM in an astrophysical environment.  相似文献   

12.
13.
We suggest that an extreme Kerr black hole with a mass ∼106 M, a dimensionless angular momentum     and a marginally stable orbital radius     located in a normal galaxy may produce a γ -ray burst (GRB) by capturing and disrupting a star. During the capture period, a transient accretion disc is formed and a strong transient magnetic field ∼     lasting for     may be produced at the inner boundary of the accretion disc. A large amount of rotational energy of the black hole is extracted and released in an ultrarelativistic jet with a bulk Lorentz factor Γ larger than 103 via the Blandford–Znajek process. The relativistic jet energy can be converted into γ -radiation via an internal shock mechanism. The GRB duration should be the same as the lifetime of the strong transient magnetic field. The maximum number of sub-bursts is estimated to be     because the disc material is likely to break into pieces with a size about the thickness of the disc h at the cusp     The shortest risetime of the burst estimated from this model is ∼     The model GRB density rate is also estimated.  相似文献   

14.
15.
Within the framework of the internal–external shocks model for γ -ray bursts, we study the various mechanisms that can give rise to quiescent times in the observed γ -ray light curves. In particular, we look for the signatures that can provide us with evidence as to whether or not the central engine goes dormant for a period of time comparable to the duration of the gaps. We show that the properties of the prompt γ -ray and X-ray emission can, in principle, determine whether the quiescent episodes are caused by a modulated relativistic wind or a switching off of the central engine. We suggest that detailed observations of the prompt afterglow emission from the reverse shock will strongly constrain the possible mechanisms for the production of quiescent times in γ -ray bursts.  相似文献   

16.
A strong correlation between the gamma-ray burster peak energy and the peak luminosity of the associated supernova was discovered by Li for four GRBs. Despite the fact that the formal significance level of the correlation is 0.3 per cent, the smallness of the data set requires careful further evaluation of the result. Subject to the assumption that the data are bivariate Gaussian, a 95 per cent confidence interval of  (−0.9972, 0.02)  for the correlation is derived. Using data from the literature, it is shown that the distribution of known peak GRB energies is not Gaussian if X-ray flashes are included in the sample. This leads to a proposed alternative to the bivariate Gaussian model, which entails describing the dependence between the two variables by a Gaussian copula. The copula is still characterized by a correlation coefficient. The Bayesian posterior distribution of the correlation coefficient is evaluated using a Markov chain Monte Carlo method. The mean values of the posterior distributions range from −0.33 to about zero, depending on the specifics of the supernova (SN) peak brightness distribution. The implication is that the existing data favour a modest correlation between the GRB peak energy and the SN peak brightness; confidence intervals are very wide and include zero.  相似文献   

17.
18.
Helium star–compact object binaries, and helium star–neutron star binaries in particular, are widely believed to be the progenitors of the observed double-neutron-star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. In this paper, the observational implications of such a supernova are discussed, and in particular are explored as a candidate γ-ray burst mechanism. In this scenario, the supernova results in a transient period of rapid accretion on to the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak-inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy-dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball that can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.  相似文献   

19.
The effects of the Blandford–Znajek (BZ) process on the evolution of the central black holes of accretion discs are investigated by an analytical method and numerical calculations in this paper. It is shown that the BZ process reduces the rates of change of some parameters of the black hole, such as mass, angular momentum, dimensionless angular momentum and temperature, and the evolution of the central black hole towards the extreme Kerr black hole is depressed effectively. However, the rate of change of entropy of the central black hole is augmented in the BZ process. In addition, the consistency of the BZ process with the three laws of black hole thermodynamics is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号