共查询到20条相似文献,搜索用时 0 毫秒
1.
Erdin Bozkurt 《International Journal of Earth Sciences》2001,89(4):728-744
The central Menderes Massif (western Turkey) is characterized by an overall dome-shaped Alpine foliation pattern and a N-NNE-trending stretching lineation. A section through the southern flank of the central submassif along the northern margin of Büyük Menderes graben has been studied. There, asymmetric non-coaxial fabrics indicate that the submassif has experienced two distinct phases of Alpine deformation: a top-to-the N-NNE contractional phase and a top-to-the S-SSW extensional event. The former fabrics are coeval with a regional prograde Barrovian-type metamorphism at greenschist to upper-amphibolite facies conditions. This event, known as the main Menderes metamorphism, is thought to be the result of internal imbrication of the Menderes Massif rocks along south-verging thrust sheets during the collision of the Sakarya continent in the north and the Anatolide-Tauride platform in the south across the Gzmir-Ankara suture during the (?)Palaeocene-Eocene. Top-to-the S-SSW fabrics, represented by a well-developed ductile shear band foliation associated with inclined and/or curved foliation, asymmetric boudins, and cataclasites, were clearly superimposed on earlier contractional fabrics. These fabrics are interpreted to be related to a low-grade (greenschist?) retrogressive metamorphism and a continuum of deformation from ductile to brittle in the footwall rocks of a south-dipping, presently low-angle normal fault that accompanied Early Miocene orogenic collapse and continental extension in western Turkey. A similar tectono-metamorphic history has been documented for the northern flank of the dome along the southern margin of the Gediz graben with top-to-the N-NNE extensional fabrics. The exhumation of the central Menderes Massif can therefore be attributed to a model of symmetric gravity collapse of the previously thickened crust in the submassif area. The central submassif is thus interpreted as a piece of ductile lower-middle crust that was exhumed along two normal-sense shear zones with opposing vergence and may be regarded as a typical symmetrical metamorphic core complex. These relationships are consistent with previous models that the Miocene exhumation of the Menderes Massif and Cycladic Massif in the Aegean Sea was a result of bivergent extension. 相似文献
2.
3.
The Menderes Massif experienced polyphase deformation, but distinguishing Pan-African events from Alpine tectono-metamorphic evolution, and discriminating Eocene–Oligocene shortening from recent extension remain controversial. To address this, monazite in garnet-bearing rocks from the massifs Gordes, Central, and Cine sections were dated in thin section (in situ) using the Th–Pb ion microprobe method. Cambro–Ordovician monazite inclusions in Cine and Central Menderes Massif garnets are ~450 m.y. older than matrix grains. Monazites in reaction with allanite from the Kuzey Detachment, which bounds the northern edge of the Central Menderes Massif, are 17±5 Ma and 4.5±1.0 Ma. The Pliocene result shows that dating of monazite can record the time of extension. The Kuzey Detachment might have exhumed rocks a lateral distance of ~53 km at a rapid rate of ~12 mm/year assuming the present ~20° ramp dip, Pliocene monazite crystallization at ~450°C, and a geothermal gradient of ~25°C/km. Assuming an angle of 60°, the rate decreases to ~5 mm/year, with the detachment surface at ~21 km depth in the Pliocene. Two Gordes Massif monazites show a similar allanite–monazite reaction relationship and are 29.6±1.1 Ma and 27.9±1.0 Ma, suggesting that the Cenozoic extension in the Gordes Massif, and possibly the entire Menderes Massif, might have begun in the Late Oligocene. 相似文献
4.
5.
6.
Donna L. Whitney Christian Teyssier Seth C. Kruckenberg Valerie L. Morgan Lindsay J. Iredale 《Lithos》2008,101(3-4):218-232
Kilometer-scale lenses of quartz-rich metasedimentary rocks crop out in a discontinuous belt along the southern margin of the Menderes Massif, Turkey, and preserve evidence for high-pressure–low-temperature (HP–LT) metamorphism related to subduction of a continental margin during Alpine orogeny. Kyanite schist, quartzite, and quartz veins contain kyanite + phengite + Mg-chlorite, and the veins also contain magnesiocarpholite. A deformed carbonate metaconglomerate juxtaposed with the quartzite-dominated unit does not contain HP index minerals, and likely represents the tectonized boundary of the siliceous rocks with adjacent marble. The HP–LT rocks (10–12 kbar, 470–570 °C) record different pressure conditions than the adjacent, apparently lower pressure Menderes metasedimentary sequence. Despite this difference there is disagreement as to whether these HP–LT rocks are part of the Menderes sequence or are related to the tectonically overlying Cycladic blueschist unit. If the former, the entire southern Menderes Massif experienced HP–LT metamorphism but the evidence has been obliterated from most rocks; if the latter, rocks recording different metamorphic-kinematic conditions experienced different tectonic histories and were tectonically juxtaposed during thrusting. Based on observations and data in this study, the second model better accounts for the differences in P–T-deformation histories of the southern Menderes Massif rocks, and suggests that the HP–LT rocks are not part of the Menderes cover sequence. 相似文献
7.
Pan-African basement rocks and a Paleozoic cover series, which were intruded by the protoliths of leucocratic orthogneisses, have been recognized in the Menderes Massif, located in the western part of the Alpine orogenic belt of Turkey. This geochemical and geochronological study focuses on the evolution of the Menderes Massif at the end of Paleozoic time. Geochemical data suggest that the crustally derived leucocratic orthogneisses have chemical composition typical of calc-alkaline and S-type granite. Zircon grains which are euhedral with typical igneous morphologies were dated by the 207Pb/206Pb evaporation method. Single-zircon dating of three samples yielded mean 207Pb/206Pb ages of 246LJ, 241LJ and 235Lj Ma. These ages are interpreted as the time of protolith emplacement in Triassic. Geological and geochronological data suggest that leucocratic granites were emplaced in a period following a metamorphic event related to the closure of the Paleo-Tethys. The leucocratic granites were metamorphosed during the Alpine orogenesis and transformed into orthogneisses. The similar Triassic magmatic event at 233DŽ Ma was also occurred, using single-zircon evaporation method, from granitic gneisses which rest upon the migmatites with tectonic contacts in Naxos, Cycladic complex. This indicates that the Menderes Massif and Cycladic complex had a common pre-Early Triassic magmatic evolution. 相似文献
8.
Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis 总被引:1,自引:0,他引:1
The main exhumation of the Menderes massif, western Turkey, occurred along an originally N‐dipping Datça–Kale main breakaway fault that controlled depositions in the Kale and the Gökova basins during the Oligocene – Early Miocene interval. The isostatically controlled upward bending of the main breakaway fault brings the lower plate rocks to the surface. In the Early Miocene, E–W‐trending N‐ and S‐dipping graben‐bounding faults fragmented the exhumed, dome‐shaped massif. The development of half grabens by rolling master fault hinges has allowed further exhumation of the central Menderes massif. After the Pliocene, high‐angle normal faults cut all of the previous structures. This model suggests that the Menderes massif is a single large metamorphic core complex that has experienced a two‐stage exhumation process. 相似文献
9.
Marbles are extensively quarried at four different stratigraphical levels from Permo-Carbonifereous to Paleogene in the southern flank of the Menderes Massif in SW Turkey. These marbles differ in color, texture and pattern depending on their stratigraphical levels and are well known in the international trade as the Mugla Black (Permo-Carbonifereous), Mugla White (Cretaceous), Milas Lemon, Lilac, Aubergine, Pearl, Veined and White (Triassic) and Aegean Bordeaux (Paleogene) marbles. The mineralogical, chemical, physical and mechanical properties of the representative marbles samples obtained from the quarries working in four major metamorphic carbonate horizons in the cover successions of the Menderes Massif's southern flank in SW Turkey are determined and the results of over 1700 tests carried out on the selected marble samples are presented. The mean test values of the physical and mechanical tests are in general, found to be above the threshold acceptance values suggested by the American and Turkish Standards for the use of marbles as a building stone and in the same order as the properties of Italian (Carrara) and Greek marbles reported in the literature. Additionally, the mean test values of the marbles have given high correlations with one another and the relations obtained between the index test results determined by simple techniques requiring minimal sample preparation effort and the mean values of the more elaborate engineering tests results are presented as tables and graphs for wider use. 相似文献
10.
O. E. Koralay O. Candan F. Chen C. Akal R. Oberh?nsli M. Sat?r O. ?. Dora 《International Journal of Earth Sciences》2012,101(8):2055-2081
The Menderes Massif, exposed in western Anatolia, is a metamorphic complex cropping out in the Alpine orogenic belt. The metamorphic rock succession of the Massif is made up of a Precambrian basement and overlying Paleozoic-early Tertiary cover series. The Pan-African basement is composed of late Proterozoic metasedimentary rocks consisting of partially migmatized paragneisses and conformably overlying medium- to high-grade mica schists, intruded by orthogneisses and metagabbros. Along the southern flank of the southern submassif, we recognized well-preserved primary contact relationship between biotite and leucocratic tourmaline orthogneisses and country rocks as the orthogneisses represent numerous large plutons, stocks and vein rocks intruded into a basement of garnet mica schists. Based on the radiometric data, the primary deposition age of the precursors of the country rocks, garnet mica schist, can be constrained between 600 and 550?Ma (latest Neoproterozoic). The North Africa–Arabian-Nubian Shield in the Mozambique Belt can be suggested as the possible provenance of these metaclastics. The intrusion ages of the leucocratic tourmaline orthogneisses and biotite orthogneisses were dated at 550–540?Ma (latest Neoproterozoic–earliest Cambrian) by zircon U/Pb and Pb/Pb geochronology. These granitoids represent the products of the widespread Pan-African acidic magmatic activity, which can be attributed to the closure of the Mozambique Ocean during the final collision of East and West Gondwana. Detrital zircon ages at about 550?Ma in the Paleozoic muscovite-quartz schists show that these Pan-African granitoids in the basement form the source rocks of the cover series of the Menderes Massif. 相似文献
11.
Sacit Özer Hasan Sözbilir İzver Özkar Vedia Toker Bilal Sari 《International Journal of Earth Sciences》2001,89(4):852-866
The stratigraphy of the uppermost levels of the Menderes Massif is controversial and within its details lie vital constraints to the tectonic evolution of south-western Turkey. Our primary study was carried out in four reference areas along the southern and eastern Menderes Massif. These areas lie in the upper part of the Menderes metamorphic cover and have a clear stratigraphic relationship and contain datable fossils. The first one, in the Akbük-Milas area, is located south-east of Bafa Lake where the Milas, then KLzLla<aç and KazLklL formations are well exposed. There, the Milas formation grades upwards into the KLzLla<aç formation. The contact between the KLzLla<aç and the overlying KazLklL formation is not clearly seen but is interpreted as an unconformity. The Milas and KLzLla<aç formations are also found north of Mu<la, in the region of Yata<an and KavaklLdere. In these areas, the Milas formation consists of schists and conformably overlying platform-type, emery and rudist-bearing marbles. Rudists form the main palaeontological data from which a Santonian-Campanian age is indicated. The KLzLla<aç formation is characterized by reddish-greyish pelagic marbles with marly-pelitic interlayers and coarsening up debris flow deposits. Pelagic marbles within the formation contain planktonic foraminifera and nanoplankton of late Campanian to late Maastrichtian age. The KazLklL formation is of flysch type and includes carbonate blocks. Planktonic foraminifera of Middle Palaeocene age are present in carbonate lenses within the formation. In the Serinhisar-Tavas area, Mesozoic platform-type marbles (YLlanlL formation) belonging to the cover series of the Menderes Massif exhibit an imbricated internal structure. Two rudist levels can be distinguished in the uppermost part of the formation: the first indicates a middle-late Cenomanian age and the upper one is Santonian to Campanian in age. These marbles are unconformably covered by the Palaeocene-Early Eocene Zeybekölentepe formation with polygenetic breccias. In the Çal-Denizli area, the Menderes massif succession consists of cherty marbles and clastic rocks with metavolcanic lenses. The Lower-Middle Eocene zalvan formation lies unconformably on this sequence and is interpreted as equivalent to the marble horizons at Serinhisar but with pelagic facies. The zalvan formation consists of shale, mafic volcanic rock, lenses of limestone and blocks of recrystallized limestone. The zalvan formation is dated here for the first time by Early-Middle Eocene foraminifera and nanoplankton from the matrix of the formation. An angular unconformity exists between the Upper Cretaceous and Lower Tertiary sequences, suggesting that a phase of deformation affected the southern and eastern part of the Menderes Massif at this time. This deformation may be caused by initial obduction of the Lycian ophiolite onto the passive margin to the north of the Menderes carbonate platform during the latest Cretaceous. Drowning of the platform led to termination of carbonate deposition and deposition of deep water flysch-like clastic sediments. 相似文献
12.
A detailed fabric and microstructural analysis of the granitic mylonites was carried out on the southern side of Bes,parmak Mountain north of Selimiye (Milas). The mylonitic augen gneisses have?a blastomylonitic texture characterized by large retort-shape porphyroclasts or augen of feldspars, around which a more ductile, medium to fine-grained matrix of muscovite, biotite, quartz and feldspar is deflected. Feldspars behave in both plastic and brittle fashion, because size reduction occurs through grain boundary migration and/or subgrain rotation, and also through fracturing. Typical “core-and-mantle” structure, characterized by a large feldspar core surrounded by a mantle of fine recrystallized grains, is very characteristic. The majority of plagioclase twins obey the albite-twin law; however, the association with pericline-law twinning suggests that many of the twins are mechanical. Evidence of strain, such as deformation twins, bent or curved twins, undulatory extinction, deformation bands and kink bands occur characteristically in plagioclase. Myrmekite is ubiquitous at K-feldspar grain boundaries, most notably on the long sides of inequant grains parallel to the S-foliation direction, which invariably face the maximum finite shortening direction. Deformation of quartz in mylonitic augen gneisses commonly results in the development of core-and-mantle structure and “type-4” quartz ribbons of elongated, preferably oriented, newly recrystallized quartz aggregates suggesting a primary dynamic recrystallization. Undulatory extinction, deformation bands and lamellae are the strain-related features associated with quartz porphyroclasts. Micas, especially biotite, undergo internal deformation by bend gliding and kinking. Most of the micas are completely attenuated and aligned such that their (001) planes are subparallel or parallel to the margins of quartz ribbons and define the foliation in the rock. These microstructures of feldspars, quartz and mica in the mylonitic augen gneisses in this part of the southern Menderes Massif are broadly consistent with fabric development under upper-greenschist- to lower-amphibolite-facies conditions, rather than almandine–amphibolite facies, as was previously believed. This supports the previous contention of the authors that the protoliths of augen gneisses are younger granitoids and do not represent an exposed Precambrian Pan-African basement in the Menderes Massif. 相似文献
13.
Gahnite, ZnAl2O4, present as an accessory mineral in regionally metamorphosed low-grade diasporites, has reacted in adjacent higher-grade, corundum-bearing metabauxite equivalents (emeries) to form Zn-rich högbomite, (Zn,Fe2+,Mg,Ni)t-2x (Ti,Sn)xAl2O4, of the 4H polytype. Commonly, the initial högbomite crystals grew epitactically along the octahedral faces of gahnite, which was subsequently dissolved, so that högbomite now forms spectacularly intergrown sets of eight crystals in perfect crystallographic orientation to each other. This indicates a metamorphic reaction, probably involving a fluid, transporting mainly the elements Zn and Al. Reactant Ti minerals in the diasporites were rutile and titanian hematite (10–15 mol% FeTiO3). In the emeries högbomite coexists with still more Ti-rich hematites containing between 26 and 37 mol% FeTiO3. The overall reaction relations involving partial reduction may be subdivided into the intial univariant reaction, gahnite+diaspore+Ti-hematite+rutile=högbomite+H2O+O2. This was followed, in the absence of gahnite, by compositional readjustments of högbomite and Ti-hematite and the appearance of magnetite. Core to rim zoning profiles indicate that, with continued growth, the högbomite crystals became poorer in Zn and Ti, but richer in Fe2+, while the Ti-contents of coexisting hematite increased. Högbomite formation at the expense of gahnite started at temperatures as low as about 400° C for an estimated pressure of 5–6 kbar. 相似文献
14.
The Mesozoic platform sequence of the Menderes Massif consists of thick succession of detrital and carbonate rocks. In this sequence there are mafic metavolcanic rocks at two different levels. The first level of mafic metavolcanic intercalations is in the Late Triassic detrital-rich series located in the ÇaltayL Formation, which is the lowermost unit of the Mesozoic platform. The second level of the mafic metavolcanic rocks is located in the Late Cretaceous-(?)Paleocene Selçuk Formation laying on top of the platform sequence. The ÇaltayL Formation, which is composed of mica-schists, thinly-bedded cherts, calc-schist and mafic volcanic intercalations unconformably overlie the BayLndLr Formation, which consists of mica-schists, phyllites, and white quartzites of Palaeozoic or probably older age. The mafic volcanic rocks in the ÇaltayL Formation are alkaline basalts with within plate characteristics and are formed during an intraplate extension. The ÇaltayL Formation is conformably overlain by the KayaaltL Formation represented by calc-schists, dolomitic marbles, and rudist- and emery-bearing massive marbles in ascending order. The Selçuk Formation overlies the KayaaltL Formation and consists of a mica-schist matrix with allochthonous blocks of mafic volcanic rocks, metaperidotites, metagabbros and massive marbles. The mafic volcanic rocks in the Selçuk Formation are tholeiitic basalts and are petrologically similar to mid-oceanic basalts. The geological and geochemical characteristics of the mafic metavolcanic rocks in the ÇaltayL Formation indicate that during the Late Triassic, the Menderes platform was segmented, probably by the opening of a branch of the Neotethyan Ocean. Between the Late Triassic and the Late Cretaceous, the Menderes carbonate platform was built up. During the Latest Cretaceous-Early Paleocene, a slab of oceanic crust obducted on this platform and provided slices of mafic metavolcanic rocks into the Selçuk Formation. 相似文献
15.
The Menderes Massif, in western Anatolia, has been described as a lithological succession comprising a basal ‘Precambrian gneissic core of sedimentary origin’ overlain in sequence by ‘Palaeozoic schist’ and ‘Mesozoic-Cenozoic marble’ forming the envelope. The boundary between core and schist envelope was interpreted as a major unconformity, the ‘Supra-Pan-African unconformity’. By contrast, our field observations and geochemical data show that around the southern side of Besparmak Mountain, north of Selimiye (Milas), the protoliths of highly deformed, mylonitized augen gneisses are granitoid rocks intrusive into the adjacent Palaeozoic metasedimentary schists. The field relationships indicate the age of intrusion to be younger than late Permian and there is no evidence for the existence of either an exposed Precambrian basement or the ‘Supra-Pan-African unconformity’ in this sector of the Menderes Massif. 相似文献
16.
Abstract Activity-composition relations in oligoclase near the peristerite gap are investigated in pelites from the Central Menderes Massif. The pressure of metamorphism is estimated independently, from garnet-rutile-ilmenite-kyanite-quartz, as being in the range 4–7 kbar. In the temperature range, 450–600°C approximately, both the Newton-Haselton calibration of the garnet-plagioclase-kyanite-quartz geobarometer and a related simple treatment of garnet-plagioclase-muscovite-biotite give a wide range of apparent pressures, correlated with plagioclase composition and ranging up to 11–12 kbar where the plagioclase is most sodic. This effect is attributed to failure of the activity model for plagioclase used in the Newton-Haselton treatment. It is inferred that, in the present area, γplag An decreases with increasing X plag An in the range An15 -An25 . The data can be interpreted in terms of high γ plag An in the high-albite structure at these temperatures, modified to lower values by 'e'ordering in the more calcic oligoclases. The ordering appears to be independent of the peristerite gap, and the data do not support the interpretation of the gap as a solvus. Garnet-plagioclase assemblages are unreliable as geobarometers where the plagioclase is more sodic than approximately An20 and T < 700°C, and should instead be used to investigate the γ -X behaviour of the plagioclase where independent geobarometry can be used as a constraint. 相似文献
17.
The Menderes Massif covers large areas in western Turkey. The better understanding of its tectono-metamorphic history would provide insight for the Alpine evolution of western Turkey and the entire eastern Mediterranean region. This paper summarizes the available literature on the metamorphic rocks of western Turkey and that of the Menderes Massif with special reference and emphasis to the papers presented in the special issue. 相似文献
18.
R. Hetzel R. L. Romer O. Candan C. W. Passchier 《International Journal of Earth Sciences》1998,87(3):394-406
The Menderes massif consists of a Precambrian Core Series that preserves evidence for a polymetamorphic history and a Paleozoic/Mesozoic Cover Series that experienced only the Alpine tectonometamorphic evolution. Structural, petrographic, and geochronologic investigations in the central Menderes massif demonstrate that (a) part of the metamorphic and structural evolution of the Precambrian basement is older than the undeformed 551±1.4-Ma-old Birgi metagranite, and (b) inferred Alpine fabrics overprinting the Cover Series largely have the same attitudes as the old structures in the much older Core Series. The inferred Alpine fabrics include both contractional and extensional structures. Contraction under greenschist to amphibolite facies conditions resulted in the imbrication of the Core and Cover Series and generated an inverted metamorphic sequence by north-directed thrusting. During Alpine extension, most of the south-dipping thrust faults were reactivated as extensional shear zones under decreasing greenschist facies conditions. 相似文献
19.
The Southern Submassif crops out in the SW of Turkey. This submassif consists of mostly large feldspar-bearing orthogneisses and to a lesser extent tourmaline-orthoclase-plagioclase-, quartz-, muscovite-, and biotite-bearing leucogranites. The orthogneiss forms domed bald hills. The leucogranites crop out (approximately 2 km2) in the southeastern lowland of the hill. Those units show various geomorphological features that are typically reported in granitoids. Many studies about the Menderes Massif are related with petrography and metamorphic history. The geomorphological features are not taken into consideration. Field observation, thin section analysis, joint set-foliation measurements, and Schmidt Hammer value determination were done in this study. The pillar structures (castellated and domed types) are among larger structures observed on flanks of the domed bald hill. Geomorphological features such as weathering pits, tafoni, honeycomb structures, polygonal cracks, flared slopes, exfoliation, and boulders are observed. The metamorphism causes mineral alignments that affect the strength of the rock. The studied rocks have high strength in perpendicular direction to foliation. The complex tectonic history caused developments of several joint sets. Differences in mineral strength (e.g., high in quartz, low in biotite and feldspar) increase weathering effect. Underground water percolation through the fractures weakens the rock and causes subsurface weathering. After exhumation, disintegrated materials are stripped off, and then flared slopes, polygonal cracks, and pillar structures are exposed. Surface weathering by wind and water increases the weathering effects and gives rise to a formation of rounded rock edges called spheroidal weathering. Contrary to other granitoid areas, the metamorphism promotes the formation of geomorphological features in the study area. 相似文献
20.
The northern Menderes metamorphic core complex has complex exhumation history and is one of the key localities to investigate the spatial and temporal relationships of extensional and compressional structures. Detachment faults and syn-extensional plutons are linked to a series of antiforms and synforms and the denudation of the northern Menderes Massif occurred in three stages. The first stage is related to the development of detachment faults under the consistent NE–SW-directed extension. The second stage is represented by a series of elongated magmatic domes that were oriented parallel, oblique and perpendicular to the regional extension direction. Emplacement of these asymmetrical magmatic domes appears to have been controlled by heterogeneous extension and post-dates the extensional Simav detachment fault. On the third stage, progressive heterogeneous extension that led to updoming of plutons has been finally accommodated by a localised and short-lived transfer zone, which was described as the Gerni shear zone for the first time in this study. The transfer zone is formed by a NE-striking, dextral ductile/brittle shear zone that accommodated the propagation of folds, conjugated strike-slip faults and normal- and oblique-slip faults. Mylonites associated with the transfer zone are related to the localisation of strain along the thermally weakened strike-slip fault systems by short-lived intrusions rather than to the development of regional-scale detachment faults. These structures are consistent with a transtensional simple shear model, which properly explains the evolution of extensional and compressional structures exposed in the northern Menderes core complex. Structural setting of the E?rigöz region is somewhat similar to that of the NE-trending gneiss domes in the northern Menderes Massif and updoming of magma during late stages of detachment faulting appears to have played an important role in the exhumation of lower and upper plate rocks. 相似文献