首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mianeh iron skarn deposit lies in the Arasbaran region within the Qaradagh metallogenic district, NW Iran. This high-grade massive magnetite skarn originated by the interaction of Upper Cretaceous limestone with metasomatic ore-bearing fluids associated with hypabyssal Oligo-Miocene quartz diorite. Mineral chemistry of the primary clinopyroxenes demonstrates the sub-alkaline, volcanic arc setting of magmatism. Two general stages of skarnification are recognized: (1) silicate skarn (stage I) is composed essentially of grossular and low-Fe diopside formed before the main mineralization and (2) magnetite-garnet skarn (stage II) composed of strongly anisotropic coarse-grained garnets with a narrow compositional zoning radially formed by addictive infiltrating of silica and iron-rich metasomatic fluids which overprint and/or crosscut the early stage silicate skarn. Anhydrous prograde calc-silicate assemblages were replaced by a series of hydrous calc-silicates (epidote, tremolite-actinolite) and/or quartz, calcite, magnetite, hematite, and pyrite. Magnetite (±hematite) is the dominant hypogene ore mineral that initially precipitated coincident with the late prograde to the early retrograde metasomatic stages. Mineralogical studies suggest that silicate skarn formation commenced at temperatures about 560 °C, X(CO2)fluid ≤ 0.15, αSiO2~?1.0, and fluid pressure 1.0 kbar. The magnetite-garnet skarn formed from H2O-rich fluids [X(CO2)fluid < 0.1] at a temperature of 525 to 450 °C and maximum log ?O2 between ?20.2 and ?23. During the late stages of prograde skarn development, the stability field of andradite shifted to low ?O2 and ?S2 conditions resulting in main iron ore deposition (as magnetite). The andradite replacement temperature and presence of pyrite (instead of pyrrhotite) suggest that log?S2 remained constant at about ?6 to ?7 during cooling of the system.  相似文献   

2.
The Sangan iron skarn deposit is located in the Sabzevar-Dorouneh Magmatic Belt of northeastern Iran. The skarn contains zoned garnet, clinopyroxene and magnetite. Cores and rims of zoned garnets are generally homogeneous, having a relatively high ΣREE, low ΣLREE/ΣHREE ratios, and positive Eu anomalies. The cores of the zoned clinopyroxenes are exceptionally HREE-rich, with relatively high ΣREE and HREE/LREE ratios, as well as positive Eu anomalies. Clinopyroxene rims are LREE-rich, with relatively low ΣREE contents and HREE/LREE ratios, and do not have Eu anomalies. Magnetite grains are enriched in LREEs in comparison with the HREEs and lack Eu anomalies. Variations of fluid composition and physicochemical conditions rather than YAG-type substitution mechanism are considered to have major control on incorporating trace elements, including REE, into the skarn mineral assemblage. Based on baro-acoustic decrepitation analysis, the calc-silicate and magnetite dominant stages were formed at similar temperatures, around 350–400 °C. In the Sangan skarns, hydrothermal fluids shifted from near-neutral pH, reduced conditions with relatively high ΣREE, low LREE/HREE ratios, and U-rich characteristics towards acidic, oxidized conditions with relatively low ΣREE, high LREE/HREE ratios, and U-poor characteristics.  相似文献   

3.
尕林格矽卡岩型铁多金属矿床位于青海东昆仑祁漫塔格造山带与柴达木盆地结合带中部。电气石作为矿区内普遍出现的矿物,部分呈半自形-自形粒状出现在正接触带矽卡岩化蚀变火山岩中(Tour-Ⅰ),也有呈他形粒状形式出现在外接触带变质砂岩中(Tour-Ⅱ)。因其生长化学行为与寄主岩石和流体的化学属性强烈相关,所以电气石的主、微量元素成分为研究热液体系背景下的流体演化及成矿物质来源提供了渠道。尕林格电气石的化学成分包括富Na-Mg的镁电气石和富Ca-Mg的钙镁电气石。Tour-Ⅰ中的环带电气石存在早期核部(Gen-1)被晚期边部(Gen-2)交代的不连续反应边特征。Gen-1为钙镁电气石,而Gen-2为镁电气石。由于镁铁质火山岩的缓冲作用,Gen-1更多地显示出原地寄主岩石的化学成分。随着流体的持续补充,Gen-2则更多地与流体成分保持平衡,显示出较窄的变化范围,与成矿密切相关。Gen-1比Gen-2更加富Fe,意味着流体中Fe浓度降低;而Na含量逐渐上升则暗示流体p H值的升高。尕林格绝大部分矽卡岩电气石都是在早期成核阶段结晶生长的,因为电气石在酸性和中酸性溶液中更加稳定。除此之外,部分Tour-I中还存在沿早期电气石颗粒边缘生长的增生边结构(Gen-3)。Gen-3比Gen-1更加富Ca,推测Gen-3是在相对封闭环境下颗粒间隙溶液作用下的产物。Tour-Ⅱ则既包括钙镁电气石,又含有镁电气石。在Tour-Ⅰ中,Fe和Mg的含量变化范围较大,这与实际观测的Tour-Ⅰ围岩为镁铁质中-基性火山岩密不可分。Tour-Ⅱ比Tour-Ⅰ更加富集B、Ti、Sc、V、Cr、Ga、LREE等元素,这与B的溶解度随流体p H值的升高而升高有关。随着岩浆演化流体p H值的升高,B在相对碱性溶液中大量富集,而大部分微量元素和LREE易与挥发分结合成络合物的形式迁移,因此,B含量高的溶液中部分微量元素和稀土元素含量也会升高。  相似文献   

4.
Gold mineralisation at Zarshuran, northwestern Iran, is hosted by Precambrian carbonate and black shale formations which have been intruded by a weakly mineralised granitoid. Granitoid intrusion fractured the sedimentary rocks, thereby improving conditions for hydrothermal alteration and mineralisation. Silicification is the principal hydrothermal alteration along with decalcification and argillisation. Three hydrothermal sulphide mineral assemblages have been identified: an early assemblage of pyrrhotite, pyrite and chalcopyrite; then widespread base metal sulphides, lead-sulphosalts and zoned euhedral arsenical pyrite; and finally late network arsenical pyrite, massive and colloform arsenical pyrite, colloform sphalerite, coloradoite, and arsenic–antimony–mercury–thallium-bearing sulphides including orpiment, realgar, stibnite, getchellite, cinnabar, lorandite and a Tl-mineral, probably christite. Most of the gold at Zarshuran is detectable only by quantitative electron microprobe and bulk chemical analyses. Gold occurs mainly in arsenical pyrite and colloform sphalerite as solid solution or as nanometre-sized native gold. Metallic gold is found rarely in hydrothermal quartz and orpiment. Pure microcrystalline orpiment, carbon-rich shale, silicified shale with visible pyrite grains and arsenic minerals contain the highest concentrations of gold. In many ways Zarshuran appears to be similar to the classic Carlin-type sediment-hosted disseminated gold deposits. However, relatively high concentrations of tellurium at Zarshuran, evidenced by the occurrence of coloradoite (HgTe), imply a greater magmatic contribution in the mineralising hydrothermal solutions than is typical of Carlin-type gold deposits. Received: 13 May 1999 / Accepted: 2 February 2000  相似文献   

5.
Summary Zippa Mountain pluton is a Mesozoic concentrically-zoned intrusion, located within the Canadian Cordillera of British Columbia. An extensive phase of K-feldspar bearing syenite grades towards its margins to mela-syenite and clinopyroxenite. This simple pattern of petrological zonation is overprinted by localised occurrences of silica-undersaturated, peralkaline rock types. High-purity wollastonite skarns occur within and peripheral to the intrusion and result from extensive interaction between intrusion-related fluids and Permian limestone/marble, at shallow crustal levels. Field, chemical and isotopic studies provide insights into interaction between a parental syenitic magma and these country rocks. To achieve this, petrological studies of four of the skarn bodies present have been combined with chemical and isotopic data from the pluton, and from drill core through the skarn into the pluton, to reconstruct the stages in the development of wollastonite skarn and progressive magma-country rock interaction. Derivation of peralkaline compositions from the syenitic magma requires either a loss of Si and Al, or addition of Na and/or K. Our studies preclude the addition of alkali elements but highlight extensive Si-infiltration into the limestone, while the conversion of marble to grossular-andradite skarn, indicates Al-infiltration. Fluid egress resulted in de-silicification/de-alumination of the Zippa Mountain magmas, and increased peralkalinity; wollastonite and garnet-bearing skarn formed as a by-product. Hence, the development of peralkaline rock compositions at Zippa Mountain required a parental syenitic magma, and reaction and/or interaction with calcareous country rocks. Present address: Institut für Geowissenschaften, Universit?t Tübingen, Tübingen, Germany  相似文献   

6.
Mineralogy and Petrology - The Ghorveh-Seranjic (GS) skarn is located in the northern part of the Sanandaj-Sirjan zone, NW Iran, which is part of Alpine-Himalaya orogenic belt. The GS metamorphic...  相似文献   

7.
北秦岭蟒岭岩体的锆石U-Pb年龄、地球化学及其演化   总被引:1,自引:1,他引:1  
蟒岭岩体位于北秦岭构造带北部,岩石类型主要为似斑状黑云母二长花岗岩、中粗粒黑云母二长花岗岩、中细粒二长花岗岩、含辉石黑云角闪闪长岩和黑云母钾长花岗岩。依据LA-ICPMS锆石U-Pb定年结果,结合前人测试的年龄,将蟒岭岩体的岩浆演化划分为晚侏罗世早期、晚侏罗世晚期—早白垩世早期和早白垩世中期3期。第一期为含辉石黑云角闪闪长岩,其LA-ICPMS锆石U-Pb年龄为(157±1) Ma,该期岩石SiO2质量分数较低,富碱,属于准铝质,钾玄岩-高钾钙碱性系列;第二期二长花岗岩,侵位年龄为(148±1) Ma~(144±1) Ma,具有高硅、富碱的特征,属于准铝质-弱过铝质,钾玄岩-高钾钙碱性I-A过渡型花岗岩;第三期黑云母钾长花岗岩,侵位年龄为(124±2) Ma,具高硅、富碱、低镁、铝饱和指数偏高的特征,属过铝质,高钾钙碱性I-A过渡型花岗岩。组成蟒岭岩体的花岗岩从早到晚,SiO2质量分数逐渐升高,而Al2O3、TiO2、MgO、CaO、P2O5、TFe2O3质量分数逐渐降低;稀土元素总量具有由高到低的变化趋势,第一期和第二期岩石的稀土元素配分曲线为轻稀土元素相对富集的右倾型,而第三期的稀土元素配分曲线呈两边高中间低的不对称弧形,整体上负铕异常不明显或呈微弱正铕异常;微量元素上,这3期岩石均富集K、Rb、Ba、Sr等大离子亲石元素,而相对亏损P、Nb、Ta、Ti等高场强元素。与区域上同时代成矿花岗岩体对比,两者均具有高硅、富碱的特征,稀土元素球粒陨石标准化曲线呈轻稀土元素富集的右倾斜型,但蟒岭岩体中二长花岗岩没有明显的Eu异常,且Ba、P、Ti亏损及Ta、Nb富集没有含矿花岗岩明显。  相似文献   

8.
The Khoy ophiolite in northwestern Iran represents a remnant of oceanic lithosphere formed in the Mesozoic Neo-Tethys. This northwest–southeast trending ophiolite complex consists from bottom to top (east to west) of a well-defined basal metamorphic zone, peridotites (dunite, harzburgite) and serpentinized peridotite, gabbros, sheeted dikes, pillow and massive lava flows, and pelagic sedimentary rocks, including radiolarian chert. The rocks of the metamorphic zone have an inverse thermal gradient from amphibolite facies to greenschist facies. The high-grade metamorphic rocks are immediately adjacent to the peridotite and the gabbros and the low-grade rocks are in contact with the Precambrian Kahar Formation. Based on mantle-normalized incompatible trace element diagrams there are two distinct types of basalt flows present at the Khoy ophiolite: (1) massive basalts that have patterns virtually identical to E-MORB, and (2) pillow basalts that have more primitive chemical composition whose trace element patterns plot between E-MORB and N-MORB. The chondrite-normalized REE patterns for the pillow basalts are LREE-depleted [(LaN/SmN)ave=0.70], similar to patterns for the mean diabase composition for the Oman ophiolite and LREE-depleted basalts of the Band-e-Zeyarat ophiolite of southern Iran. The REE patterns for the massive basalts are similar in general REE abundances to the pillow basalt patterns, but they are slightly LREE-enriched [(LaN/SmN)ave=1.09] and their patterns cross those of the pillow basalts. The REE patterns for the gabbros and diorites indicates that the crustal-suite rocks were most likely derived by a process of fractional crystallization from a common basaltic melt. This basaltic melt was most likely generated by approx. 20–25% partial melting of a simple lherzolite source and had REE concentrations of roughly 10× chondrite. A comparison between the results from the Khoy ophiolite and the data from other Iranian ophiolites reveals geochemical evidence to suggest a tectonic link between the Khoy ophiolite and the rest of the Iranian ophiolites. Our results suggest that Khoy ophiolite is equivalent to the inner group of Iranian ophiolites (e.g. Nain, Shahr-Babak, Sabzevar, Tchehel Kureh and Band-e-Zeyarat) and was formed as a result of closure of the northwestern branch of a narrow Mesozoic seaway which once surrounded the Central Iranian microcontinent.  相似文献   

9.
Eslamy peninsula, 360 km2 in area, is located in the eastern coast of Urmieh lake in the northwest of Iran. This peninsula is a complex stratovolcano with a collapsed center, which is elevated due to later intrusions of sub-volcanic masses with trachytic to microsyenitic composition. The composite cone consists of a sequence of leucite tephrite, tephrite, leucite basanite, basanite and related pyroclastic rocks. Magmatic activities in the Eslamy peninsula begin with potassic alkaline to ultrapotassic and basic, silica-undersaturated shoshonitic rocks and they are followed by intrusions of lamprophyric dykes and end with acidic magmatism including trachytic, microsyenitic, syenitic and phonolitic domes. The original magma of the Eslamy peninsula rocks has a potassic alkaline nature (Roman type) rich in LREE and LILE and depleted of HREE. These characteristics suggest that the origin of magma can be from deep mantle with a garnet lherzolite composition, a low partial melting rate which has been contaminated by crustal materials in its way up. Fractional crystallization of olivine, diopsidic clinopyroxene and leucite played an important role in the evolution of magmas. Scrutinizing the geodynamic environment of Eslamy peninsula rocks in discrimination diagrams indicates that these rocks must have been formed in a post-collision magmatic arc setting.  相似文献   

10.
Comparison of bulk chemistry confirms the comagmatic nature of the New South Wales leucitite belt and the olivine leucitite at Cosgrove, Victoria. This relationship was previously implied by general mineralogical, petrographical, and age similarities, as well as the meridional trend of the occurrences. Differences of a minor nature occur between the N.S.W. and Victorian rock types, the latter being less potassic and magnesian (poorer in leucite and olivine) and more calcic (richer in clinopyroxene). Trace‐element compositions for the Cosgrove leucitite are within the ranges recorded for the N.S.W. belt.

Essentially one‐rock type—a melanocratic leucitite—characterizes the belt, with the essential minerals olivine, diopside/salite, leucite, titanomagnetite, ilmenite, nepheline, and Ti‐Ba biotite. However, a pegmatoid phase, relatively enriched in Ti, Fe, and P, is well developed at Cosgrove, with its mineralogy (salite‐titanian aegirine, sodic amphibole, K‐feldspar, nepheline, titanomagnetite, apatite, ilmenite, aenigma‐tite, sodalite, and analcite) demonstrating extreme peralkaline differentiation. Some evidence suggests that the analcite resulted from alteration of leucite. The role of volatiles such as F was significant in facilitating development of coarse textures as well as crystallization of the amphibole, apatite, and sodalite.

Magmas for the southeastern Australian leucitite belt were probably generated by equilibrium fusion of phlogopite peridotites, of slightly variable mineralogy. Deep‐seated crustal fractures controlled the relatively limited appearance of the magmas at the surface. There is no regular age variation along the belt, despite the age range of from 7 to 13 m.y.  相似文献   

11.
Mineralogy,geochemistry and petrogenesis of Kurile island-arc basalts   总被引:1,自引:0,他引:1  
Whole-rock (major- and trace-element) and mineral chemical data are presented for basaltic rocks from the main evolutionary stages of the Kurile island arc, NW Pacific. An outer, inactive arc contains a Cretaceous-Lower Tertiary sequence of tholeiitic, calcalkaline and shoshonitic basalts. The main arc (Miocene-Quaternary) is dominated by weakly tholeiitic, with lesser, alkalic basalts. The mineralogy of Kuriles basalts is characterised by An-rich plagioclases, a continuous transition from chromites to titanomagnetites, pyroxenes with low Fe3+ contents and without strong Fe-enrichment, abundance of groundmass pigeonites and the absence of amphiboles. There is an increase in K2O contents both along-arc (northwards) and towards the reararc side. The basalts show an exceptionally wide but continuous range of K2O contents (0.1–4.7%) which correlate with other LIL element contents. Tholeiitic basalts with low LIL element contents, La/Yb and Th/U, but high K/ Rb, P2O5/La and Zr/Nb were derived from depleted, lherzolitic mantle which had suffered fluid metasomatism by K, Rb, Cs, Sr, Ba, Pb and H2O only. Alkali basalts are also thought to be derived from depleted mantle but melt metasomatism involved addition of all LIL elements to a garnet lherzolite mantle. The Kuriles basalts and their mantle sources range continuously between these two end-member compositions. The metasomatic fluids/melts were probably released by early dehydration and later melting within subducted oceanic lithosphere though the process is not adequately constrained.  相似文献   

12.
The kaolin deposits of the Amazon region of Brazil are of lateritic origin, modified by subsequent reduced lacustrine and/or swamp environment. They are contemporaneous with lateritic bauxites found in the same region, all formed from aluminium silicate rocks. These are principally sedimentary rocks from the Cretaceous period (Itapecuru and Alter do Chão), but also include metamorphic and felsic volcanic rocks. After erosion of the upper part of these profiles they became locally a substratum for swampy and/or lacustrine environments mostly developed over the clayey saprolitic horizon where kaolin occurs. The saprolitic horizon is made up mainly of iron-mottled kaolinite which has been subject to an intense deferrification, which has increased the kaolin brightness and thickness. The kaolins are basically made up of well-crystallized kaolinite, quartz, sometimes illite-muscovite, anatase and hematite. In certain locations, crandallite-goyazite is also present. The deposits studied differ from each other in the mineral content levels, concentration of principal elements and in trace element distribution. The greatest quantity of quartz and, consequently SiO2, is intrinsically related to the type of parent rock. Small sedimentary deposits occur in alluvial flood plains located not very far from the lateritic source.  相似文献   

13.
The Yangla Cu deposit is the largest Cu skarn deposit in the Jinshajiang tectonic belt. Based on the detailed observation of crosscutting relationships, three mineralization stages (i.e., pre-ore, ore and supergene) have been identified in the Yangla deposit. The pre-ore stage is dominated by prograde skarn. The ore stage is characterized by the precipitation of hydrous silicate minerals, Fe-oxides, Fe-Cu-Mo-sulfides, quartz and calcite, whose mineral assemblages were formed in the early and late sub-ore stages. The early sub-ore stage is marked by retrograde alteration with the deposition of hydrous silicate minerals (e.g., actinolite, epidote and chlorite), Fe-oxides, abundant Fe-Cu-Mo-sulfides, quartz and minor calcite. Whilst, the late sub-ore stage, associated with silicic and carbonate alteration, is represented by widespread thick quartz or calcite veins with disseminated pyrite, chalcopyrite, galena and sphalerite. We present new carbon-oxygen (C-O) isotopic compositions of the ore-hosting marble and hydrothermal calcite of this deposit. The hydrothermal calcite in the Yangla deposit was precipitated from both the early and late sub-ore stages. Calcite I from the early sub-ore stage is anhedral, and occurs as spot in the skarn or locally replaces the skarn minerals. Calcite II from the late sub-ore stage is distinguished by being coarse-grained, subhedral to euhedral and its occurrence in thick veins. Calcite I contains lower δ13CPDB (−7.0‰ to −5.0‰) and δ18OSMOW (7.2‰ to 12.7‰) than Calcite II (δ13CPDB = −4.5‰ to −2.3‰; δ18OSMOW = 10.7‰ to 19.4‰). In the δ13CPDB vs. δ18OSMOW diagram, the Calcite I and Calcite II data fall close to the igneous carbonatite field and between the fields of igneous carbonatite and marine carbonates, respectively. This suggests a dominantly magmatic origin for the early sub-ore fluids, and there might have been increasing carbonate wall rock involvement towards the late sub-ore stage. The ore-hosting marble (δ13CPDB = −4.8‰ to −0.3‰; δ18OSMOW = 10.2‰ to 23.9‰) also shows a positive δ13CPDB vs. δ18OSMOW correlation, which is interpreted to reflect the decreasing alteration intensity during the interactions between the hydrothermal fluids and ore-hosting carbonates. Simulated calculation suggests that both the Calcite I and Calcite II precipitated at 350 °C to 250 °C and 250 °C to 150 °C, respectively. We proposed that CO2 degassing and water/rock interactions were likely the two major processes that precipitated the calcite and led to the observed C-O isotopic features of the Yangla Cu deposit.  相似文献   

14.
内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学   总被引:15,自引:5,他引:15  
黄岗梁矿床是我国北方唯一的一处锡铁共生大型矽卡岩型矿床,苏大沟是黄岗梁矿床NE向延伸的铜铅锌矿点。黄岗梁矿床围岩、蚀变围岩、赋矿矽卡岩以及不同矿体石榴子石稀土元素的总特征体现了岩浆和岩浆水、围岩和大气降水对成矿的综合影响。靠近岩体则较多地体现了岩浆和岩浆热液作用;远离岩体则围岩地层和大气降水作用增强;从贫矿体-富矿体,从早阶段到晚阶段,大气降水对成矿的贡献增大,晚期又叠加了岩浆和岩浆热液成矿作用。黄岗梁铁锡矿床的REE配分曲线类型多样、变化较大,充分显示了成矿流体的多来源和多期次叠加成矿的稀土元素特征。苏木沟铜铅锌矿点具有岩浆热液稀土元素特征。稀土元素的研究初步建立了华北北缘黄岗梁式矽卡岩型矿床稀土元素配分模式。  相似文献   

15.
Granite- and gabbrodiorite-associated skarn deposits of NW Iran   总被引:1,自引:0,他引:1  
Field and laboratory studies show that there are two types of skarn deposits in NW Iran: granite-associated (type I) and gabbrodiorite-associated (type II). Granite-associated deposits are accompanied by Cu and Fe mineralisation, whereas Mn and Fe are the main ore metals in gabbrodiorite-associated skarn deposits. There are some differences in the mineralogy of these skarn deposits. Bixbyite, piemontite and Cr-bearing garnet are found only in gabbrodiorite-associated skarns, whereas idocrase occurs only in granite-associated deposits. Type II skarns show exoskarn features, whereas some type I skarns have developed endoskarn as well. Evidence of boiling of hydrothermal fluid can be seen in both types and seems to be a common mechanism of mineral deposition. Gabbrodiorite-associated skarns show higher fO2 than granite-associated deposits. Based on mineralogical and textural evidence, mineralisation in both groups has started from about 550 °C. Early formed anhydrous minerals have begun to be replaced by hydrous minerals from about 400 °C.It seems that due to low fluid content in the gabbrodioritic magma, heated meteoritic water in the surrounding volcanoclastic and tuffaceous rocks was the main source of hydrothermal solution in the gabbrodiorite-associated skarn system.  相似文献   

16.
17.
陈衍景  郭抗衡 《矿床地质》1993,12(3):265-272
通过全面论述其地质、地球化学特征、证明矿床应属典型的矽卡岩型金矿,矿床及含矿岩体形成于中生代华北与华南两板块碰撞造山的陆内俯冲作用过程中。  相似文献   

18.
The Mendejin pluton is located in the Mianeh area, NW Iran, 550 km from Tehran. This pluton is probably of Oligo-Miocene age and is the result of extensive magmatism which occurred during and after the Alpine Orogeny. Similar plutons are common in the Alborz–Azarbaijan structural zone of Iran, and it is likely that there are concealed plutons related to this extensive Cenozoic magmatism, but due to their youth and low rates of erosion they have not yet been exposed. The Mendejin pluton is a composite body made up of four types of plutonic rocks: pink tonalite, grey tonalite, diorite and aplite. The pink tonalite is porphyritic and contains phenocrysts of plagioclase, K-feldspar and hornblende in a groundmass consisting of quartz, plagioclase, K-feldspar, hornblende, zircon, monazite, leucoxene, apatite and hematite. The grey porphyritic tonalite has more biotite, pyroxene and pyrite and less accessory phases compared with the pink tonalite. The diorite has a microporphyritic texture with phenocrysts of plagioclase, hornblende and augite. This rock also occurs as xenoliths in the Mendejin pluton. The aplitic dykes are the youngest magmatic products at Mendejin. The Mendejin tonalite contains more Cl, As, S, Cu, Ni and Zn than the global granite. These rocks are of I-type, peraluminous and calc-alkaline, with medium to high potassium, and were formed as part of a volcanic arc. The Mendejin pluton contains up to 8 ppb gold and could potentially have been the source of an economic gold deposit by leaching of Au from wall rocks and deposition in extensive hydrothermally altered marginal zones.  相似文献   

19.
广东龙窝花岗闪长质岩体的年代学、地球化学及岩石成因   总被引:10,自引:5,他引:10  
龙窝岩体是南岭地区燕山早期具幔源组分贡献的花岗岩的典型代表,其主体岩性为花岗闪长岩,岩体中含有深色闪长质包体,锆石ELA-ICP-MS定年结果表明花岗闪长岩的形成年龄为169.1±2.5Ma,属中侏罗世岩浆活动的产物。地球化学特征上,该岩体铝弱过饱和(A/NKC=1.0~1.1),相对贫碱,富钾(K_2O/Na_2O=1.15~1.45),富轻稀土和大离子亲石元素(如Rb、Cs、Th、U),贫高场强元素(如Nb、Ti)。闪长质包体具有与寄主岩相似的矿物组合,但铁镁矿物含量及过渡族元素(V、CR、Co、Ni)丰度相对偏高,二者的主量和微量元素表现出混合成因的演化趋势。寄主岩与包体具有相近的Sr、Nd同位素组成,I_(Sr)和ε_(Nd)(t)值分别为0.70843~0.70995、-6.53~-8.89和0.70797~0.70882、-4.71~-9.24,均表现出壳幔混源花岗岩类岩石的特点。二元混合模拟计算显示寄主岩与包体成岩过程中地幔物质的混入比例分别为32.9%~40.4%和 31.8%~46.4%。通过对岩石产出构造背景及地质地球化学特征的综合分析,表明龙窝花岗闪长岩及其中的闪长质包体是在伸展-引张环境下,由幔源基性岩浆及其诱发的壳源长英质岩浆混合作用的产物。  相似文献   

20.
段登飞  蒋少涌 《岩石学报》2017,33(11):3507-3517
为了解长江中下游地区与金铜矿化有关的岩体在浅部的演化过程及其对成矿的作用,本文对鄂东南矿集区鸡冠嘴矽卡岩型金铜矿成矿岩体石英二长闪长斑岩进行了详细的岩相学观察,并利用电子探针(EMPA)分析了其中辉石和角闪石的主量成分。岩相学特征显示辉石形成时间早于角闪石。辉石成分变化较小,而角闪石成分变化较大。角闪石可根据Al的含量分为高低两组,即高铝含量的自形角闪石以及低铝含量的半自形及他形角闪石。高铝角闪石又不同程度的被低铝角闪石交代。通过矿物温压计估算辉石形成的温度和压力为1055~1071℃(平均1060℃)和224~312MPa(平均255MPa)。高铝角闪石形成的温度和压力为809~864℃(平均833℃),108~193MPa(平均137MPa),低铝角闪石形成的温度和压力为721~766℃(平均741℃),48~67MPa(平均56MPa)。岩浆具有较高的氧逸度,并且从高铝角闪石到低铝角闪石,熔体的氧逸度从△NNO+0.6升高到△NNO+1.9。岩浆经历了连续的侵位历史,从9.6km到5.2km的岩浆房再到2.1km的浅地壳处就位。岩浆在9.6km处经历了辉石的分离结晶,在5.2km处经历了角闪石及少部分斜长石的分离结晶,在2.1km处经历由于降压引起的流体出溶。由于深部的分离结晶作用,熔体中的水含量增加,氧逸度升高。较高的水含量使岩浆更容易演化出成矿热液,较高的氧逸度使岩浆演化早期没有硫化物的分离结晶,从而阻止了成矿元素在岩浆演化早期亏损。鸡冠嘴岩体较浅的就位深度也更有利于成矿流体的析出。这些因素共同作用形成了鸡冠嘴金铜矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号