首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of seismic anisotropy in the crust and the uppermost mantle gives lots of information about the ambient mantle flow, stress state, and the dynamic processes inside the Earth. Thus, seismic anisotropy and its main distinctive features beneath the southeastern Mediterranean region are studied through the analysis of teleseismic shear-wave splitting observed at six broadband seismic stations belonging to the GEOFON and the MedNet. Although the number of the recording stations is small; a total of 495 splitting parameters are obtained, which revealed significant variations in the observed fast polarization directions beneath the study area. The stations in northern Egypt and Cyprus show fast velocity directions oriented roughly N–S to NNE–SSW, coincident with many previous results. A slightly different splitting pattern comprising NE–SW fast polarization directions is observed in the stations located along the Dead Sea fault in the southeastern Mediterranean; which are consistent with the current strike-slip motion between Africa and Arabia. In addition, NW–SE fast polarization directions are recognized in the latter group. The observed delay times vary greatly but their averages lie between 0.35 and 1 s. Although large-scale mechanisms, such as the absolute plate motion of Africa and Arabia towards Eurasia and the differential motion between Arabia and Africa can be invoked to predominantly explain the origin of anisotropic features, we suggest that density-driven flow in the asthenosphere is a possible additional cause of the wide range of the splitting pattern observed beneath some stations.  相似文献   

2.
Teleseismic earthquake data recorded by 11 broadband digital seismic stations deployed in the India–Asia collision zone in the eastern extremity of the Himalayan orogen (Tidding Suture) are analyzed to investigate the seismic anisotropy in the upper mantle. Shear-wave splitting parameters (Φ and δt) derived from the analysis of core-refracted SKS phases provide first hand information about seismic anisotropy and deformation in the upper mantle beneath the region. The analysis shows considerable strength of anisotropy (delay time ~0.85–1.9 s) with average ENE–WSW-oriented fast polarization direction (FPD) at most of the stations. The FPD observed at stations close to the Tidding Suture aligns parallel to the strike of local geological faults and orthogonal to absolute plate motion direction of the Indian plate. The average trend of FPD at each station indicates that the anisotropy is primarily originated by lithospheric deformation due to India–Asia collision. The splitting data analyzed at closely spaced stations suggest a shallow source of anisotropy originated in the crust and upper mantle. The observed delay times indicate that the primary source of anisotropy is located in the upper mantle. The shear-wave splitting analysis in the Eastern Himalayan syntaxis (EHS) and surrounding regions suggests complex strain partitioning in the mantle which is accountable for evolution of the EHS and complicated syntaxial tectonics.  相似文献   

3.
Shear wave splitting measurements in South Kamchatka during the 3-year period (1996–1998) in which the Kronotsky Earthquake (M=7.7, December 5, 1997) occurred are used to determine anisotropic parameters of the subduction zone and shear wave splitting variations with time. The local small seismic events recorded at the Petropavlovskaya IRIS station (PET) were analyzed. The dominant azimuths of the fast shear wave polarizations for the 3-year period are defined within N95±15°E, which are consistent with the general Pacific Plate motion direction. Modeling of fast shear wave polarizations shows that HTI model with the symmetry axis oriented along N15°E±10° fit well the observed data for events the focal depths of which are less than 80 km. For the greater depths, the orthorhombic symmetry of medium is not excluded. The anisotropy coefficient increases generally with depth from 1–2% in the crust to 4–7.5% in the subducting plate. Variations in time delays show a general increase up to 10–15 ms/km during 1996–1997 before the large crustal earthquake series (M≈5.5–7) in the Avacha Bay and before the Kronotsky Earthquake. Analysis of fast S-wave azimuths of mantle events reveals a temporal cyclic variation. The most regular variations are observed for fast azimuths of deep events with a period of about 172 days over the 3-year period. The fast polarizations of crustal events behave comparatively stable. It is assumed that the major instabilities in stress state are localized in the descending slab and influenced the upper mantle and comparatively stable crust.  相似文献   

4.
Shear wave splitting parameters from local deep-focus and crustal earthquakes beneath southern Sakhalin and northern Hokkaido have been measured. The study of the split shear wave amplitude, polarization, and splitting parameter distribution revealed their correlation with the geometry of the subsiding Pacific Plate and horizontal heterogeneity of the rheological properties and viscosity of the medium. Comparison of the observed data with those modeled in anisotropic media allows the mantle flow to be oriented NNW beneath southern Sakhalin and northern Hokkaido. Based on the split shear wave time delays, the degree of mantle anisotropy is estimated to be around 1–2% beneath southern Sakhalin and 1.5–2.5% beneath northern Hokkaido. A relatively high anisotropy (2–15%) from local crustal earthquakes is found beneath the Central Sakhalin Fault.  相似文献   

5.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   

6.
We explore the variations of Rayleigh-wave phase-velocity beneath the East China Sea in a broad period range (5–200 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 373 interstation paths using vertical-component broad-band waveforms at 32 seismic stations around the East China Sea from 6891 global earthquakes.The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy provide a high resolution model of the lithospheric mantle beneath the East China Sea. The model exhibits four regions with different isotropic and anisotropic patterns: the Bohai Sea, belonging to the North China Craton, displays a continental signature with fast velocities at short periods; the Yellow Sea, very stable unit associated with low deformation, exhibits fast velocities and limited anisotropy; the southern part of the East China Sea, with high deformation and many fractures and faults, is related to slow velocities and high anisotropic signature; and the Ryukyu Trench shows high-velocity perturbations and slab parallel anisotropy.  相似文献   

7.
Body-wave analysis — shear-wave splitting and P travel time residuals — detect anisotropic structure of the upper mantle beneath the Swedish part of Fennoscandia. Geographic variations of both the splitting measurements and the P-residual spheres map regions of different fabrics of the mantle lithosphere. The fabric of individual mantle domains is internally consistent, usually with sudden changes at their boundaries. Distinct backazimuth dependence of SKS splitting excludes single-layer anisotropy models with horizontal symmetry axes for the whole region. Based upon joint inversion of body-wave anisotropic parameters, we instead propose 3D self-consistent anisotropic models of well-defined mantle lithosphere domains with differently oriented fabrics approximated by hexagonal aggregates with plunging symmetry axes. The domain-like structure of the Precambrian mantle lithosphere, most probably retaining fossil fabric since the domains' origin, supports the idea of the existence of an early form of plate tectonics during the formation of continental cratons already in the Archean. Similarly to different geochemical and geological constraints, the 3D anisotropy modelling and mapping of fabrics of the lithosphere domains contribute to tracking plate tectonics regimes back in time.  相似文献   

8.
南北构造带北段位于青藏高原东北缘及其向北东方向扩展的区域,其岩石圈变形特征对于探讨青藏高原东北缘变形机制及其扩展范围具有非常关键的意义。地震波各向异性能很好地反映上地幔的变形特征。因此,本文对布设在南北构造带北段的流动地震台站记录的远震波形资料进行S波分裂研究,获得了研究区上地幔各向异性图像以及该区岩石圈地幔的变形特征信息。S波分裂研究结果表明,研究区地震波各向异性来自于上地幔,区内不同构造单元上地幔各向异性方向不尽相同。快波方向分布显示,青藏高原东北缘,鄂尔多斯西缘以及贺兰构造带北段的快波方向主要表现为NW-SE向,与前人在银川地堑和贺兰构造带中、北部得到的NW-SE向的上地幔各向异性方向一致,显示这些地区岩石圈地幔变形一致,该结果表明青藏高原东北缘向北东方向扩展的影响范围已到达贺兰构造带北段。阿拉善地块内部快波方向显示为NE-SW向,与阿拉善地块北部存在的北东向展布的晚古生代岩浆岩方向一致,表明该NE-SW向的快波方向可能代表地是“化石”各向异性,是晚古生代阿拉善地块受到古亚洲洋闭合作用的结果。此外,鄂尔多斯地块内也存在NE-SW向的各向异性方向,与区内中-晚侏罗世存在的NE-SW向逆冲推覆构造方向一致,因此该各向异性方向也代表了“化石”各向异性,是鄂尔多斯地块受到古特提斯构造域的块体碰撞、古太平洋板块北西向俯冲以及西伯利亚板块向南俯冲共同作用的结果。  相似文献   

9.
《地学前缘(英文版)》2018,9(6):1911-1920
We estimate the shear wave splitting parameters vis-à-vis the thicknesses of the continental lithosphere beneath the two permanent seismic broadband stations located at Dhanbad (DHN) and Bokaro (BOKR) in the Eastern Indian Shield region. Broadband seismic data of 146 and 131 teleseismic earthquake events recorded at DHN and BOKR stations during 2007–2014 were analyzed for the present measurements. The study is carried out using rotation-correlation and transverse component minimization methods. We retain our “Good”, “Fair” and “Null” measurements, and estimate the splitting parameters using 13 “Good” results for DHN and 10 “Good” results for BOKR stations. The average splitting parameters (ϕ, δt) for DHN and BOKR stations are found to be 50.76°±5.46° and 0.82 ± 0.2 s and 56.30°±5.07° and 0.95 ± 0.17 s, and the estimated average thicknesses of the anisotropic layers beneath these two stations are ∼ 94 and ∼109 km, respectively. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The eastward deviation of the fast axis azimuths from absolute plate motion direction is interpreted to be caused by induced outflow from the asthenosphere. Further, the delay time found in the present analysis is close to the global average for continental shield areas, and also coherent with other studies for Indian shield regions. The five “Null” results and the lower delay time of ∼0.5–0.6 s might be indicating multilayer anisotropy existing in the mantle lithosphere beneath the study area.  相似文献   

10.
《International Geology Review》2012,54(10):1213-1225
P- and S-wave tomography of the upper mantle beneath the Cape Verde hotspot is determined using arrival-time data measured precisely from three-component seismograms of 106 distant earthquakes recorded by a local seismic network. Our results show a prominent low-velocity anomaly imaged as a continuous column <100 km wide from the uppermost mantle down to about 500 km beneath Cape Verde, especially below the Fogo active volcano, which erupted in 1995. The low-velocity anomaly may reflect a hot mantle plume feeding the Cape Verde hotspot.  相似文献   

11.
Data from the temporary TRANSALP seismic network were analysed to investigate the seismic anisotropy in the upper mantle beneath the Eastern Alps. We operated mostly short period and some broadband stations in a dense linear array, which transects the Eastern Alps at 12° E longitude. Recorded SKS and SKKS phases with different backazimuths were used simultaneously to calculate the splitting parameters of delay time and fast axis direction for each seismic station. While we found variations in the delay times between 0.8 and 2.0 s, the determined fast axis directions prove to be rather consistent along the profile (60°–70° N). They coincide well with the trend of the Eastern Alps, thus suggesting orogen-parallel flow in the upper mantle. Our findings support the earlier proposed idea that the Adriatic indenter which was forced northwards into the European plate during the late stage of the Alpine orogeny, triggered an escape movement to the less constrained Pannonian basin to the east.  相似文献   

12.
We study high-resolution three-dimensional P-wave velocity (Vp) tomography and anisotropic structure of the crust and uppermost mantle under the Helan–Liupan–Ordos western margin tectonic belt in North-Central China using 13,506 high-quality P-wave arrival times from 2666 local earthquakes recorded by 87 seismic stations during 1980–2008. Our results show that prominent low-velocity (low-V) anomalies exist widely in the lower crust beneath the study region and the low-V zones extend to the uppermost mantle in some local areas, suggesting that the lower crust contains higher-temperature materials and fluids. The major fault zones, especially the large boundary faults of major tectonic units, are located at the edge portion of the low-V anomalies or transition zones between the low-V and high-V anomalies in the upper crust, whereas low-V anomalies are revealed in the lower crust under most of the faults. Most of large historical earthquakes are located in the boundary zones where P-wave velocity changes drastically in a short distance. Beneath the source zones of most of the large historical earthquakes, prominent low-V anomalies are visible in the lower crust. Significant P-wave azimuthal anisotropy is revealed in the study region, and the pattern of anisotropy in the upper crust is consistent with the surface geologic features. In the lower crust and uppermost mantle, the predominant fast velocity direction (FVD) is NNE–SSW under the Yinchuan Graben and NWW–SEE or NW–SE beneath the Corridor transitional zone, Qilian Orogenic Belt and Western Qinling Orogenic Belt, and the FVD is NE–SW under the eastern Qilian Orogenic Belt. The anisotropy in the lower crust may be caused by the lattice-preferred orientation of minerals, which may reflect the lower-crustal ductile flow with varied directions. The present results shed new light on the seismotectonics and geodynamic processes of the Qinghai–Tibetan Plateau and its northeastern margin.  相似文献   

13.
华北克拉通上地幔变形及其动力学意义   总被引:1,自引:0,他引:1       下载免费PDF全文
赵亮  郑天愉 《地质科学》2009,44(3):865-876
华北克拉通从稳定到破坏的演化过程对有关地球动力学的经典理论提出了挑战,研究其独特的演化历史是固体地球科学研究的一项重要内容。上地幔矿物晶体的各向异性记录了上地幔发生构造变形的信息,研究上地幔地震波各向异性能够揭示现今和构造历史时期所发生的构造运动。本文总结了近年来作者在华北克拉通地区所进行的高密度、覆盖广泛的地震波横波分裂观测研究结果。横波分裂的快轴方向与绝对板块运动方向的不一致,以及横波分裂参数快速的空间变化特征表明了华北克拉通的SKS横波分裂主要反映上地幔的变形。观测结果表明:鄂尔多斯块体保留了克拉通较弱的各向异性特征,其西端体现了元古代克拉通拼合的变形特征; 中新生代华北克拉通破坏事件以不同的机制主导了华北克拉通中部和东部的上地幔变形,在东部地区北西-南东向的拉张应力作用使得快轴方向平行于拉张方向,而在中部则因受到较厚岩石圈的阻挡使得地幔流动改变了方向,因此造成了北东和北北东向的岩石圈拉张。  相似文献   

14.
The presence of two regional seismic networks in southeastern France provides us high-quality data to investigate upper mantle flow by measuring the splitting of teleseismic shear waves induced by seismic anisotropy. The 10 three-component and broadband stations installed in Corsica, Provence, and western Alps efficiently complete the geographic coverage of anisotropy measurements performed in southern France using temporary experiments deployed on geodynamic targets such as the Pyrenees and the Massif Central. Teleseismic shear waves (mainly SKS and SKKS) are used to determine the splitting parameters: the fast polarization direction and the delay time. Delay times ranging between 1.0 and 1.5 s have been observed at most sites, but some larger delay times, above 2.0 s, have been observed at some stations, such as in northern Alps or Corsica, suggesting the presence of high strain zones in the upper mantle. The azimuths of the fast split shear waves define a simple and smooth pattern, trending homogeneously WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North in the Alps. This pattern is in continuity with the measurements performed in the southern Massif Central and could be related to a large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninic slab. We show that seismic anisotropy nicely maps the route of the slab from the initial rifting phase along the Gulf of Lion (30–22 Ma) to the drifting of the Corsica–Sardinia lithospheric block accompanied by the creation of new oceanic lithosphere in the Liguro–Provençal basin (22–17 Ma). In the external and internal Alps, the pattern of the azimuth of the fast split waves follows the bend of the alpine arc. We propose that the mantle flow beneath this area could be influenced or perhaps controlled by the Alpine deep penetrative structures and that the Alpine lithospheric roots may have deflected part of the horizontal asthenospheric flow around its southernmost tip.  相似文献   

15.
This study presents shear wave splitting analysis results observed at ISP (Isparta) broadband station in the Isparta Angle, southwestern Turkey. We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, ϕ and delay time between fast and slow waves, δt) from mainly SKS and a few SKKS phases of the selected 21 seismic events. Then, we compared calculated splitting parameters at ISP station (56° ≤ ϕ ≤ 205°; 0.37 s ≤ δt ≤ 4 s) with those previously calculated at ANTO (Ankara) and ISK (İstanbul) stations (27° ≤ ϕ ≤ 59°; 0.6 s ≤ δt ≤ 2.4 s and 26° ≤ ϕ ≤ 54°; 0.6 s ≤ δt ≤ 1.5 s) which are located at 230 and 379 km away from ISP station in central and northwestern Turkey, respectively. The backazimuthal variations of the splitting parameters at ISP station indicate a different and complex mantle polarization anisotropy for the Isparta Angle in southwestern Turkey compared to those obtained for Ankara and İstanbul stations.  相似文献   

16.
The measurements of the parameters of split shear (S) waves from local deep-focus earthquakes recorded in 2005–2007 by a network of 12 seismic stations in Southern Sakhalin are presented. The results revealed the heterogeneous distribution of the anisotropic properties beneath Southern Sakhalin. The azimuths of the fast S-wave polarization beneath the stations in the central part of the peninsula are oriented along the NNW and NNE-NE directions normal to and along the Kuril Trench. Beneath the stations located along the western and eastern coasts, the azimuths of the fast S-wave polarization change their direction from NNW in the northern area to E-SE in the southern area. The highest anisotropy degree (up to 0.9–1.5%) is recorded beneath the central part of Southern Sakhalin. The maximum values of the discrepancy in the arrival time of the split S-waves are observed when the azimuth of the fast S-wave is oriented along the NNE beneath the active fault zones. The analysis of the variations of the S-wave lag time shows their weak depth dependence. The highest anisotropy is assumed in the upper layers of the medium (down to a depth of about 250 km). The results obtained for the dominating wave frequency of 1–5 Hz represent mainly the medium-scale anisotropy of the top of the studied region.  相似文献   

17.
We analyze splitting of shear waves recorded during the SVEKALAPKO passive seismic experiment in south-central Finland to study fabrics of the mantle lithosphere of the Precambrian region and thus to bring information into a debate on existence of plate tectonics or its forms in the early stage of continent formation. Geographical variations of the splitting parameters and their distinct dependence on direction of wave propagation through the upper mantle allow us to identify six domains of the central Fennoscandian mantle lithosphere, including the Proterozoic–Archean transition, and to model their fabrics by joint inversion of body wave anisotropic parameters. Fabrics of the Archean mantle lithosphere can be approximated by a peridotite aggregate with lineation a dipping to the NE. On the other hand, anisotropy of the Proterozoic mantle lithosphere is weaker and we model its fabric by the (a, c) foliations dipping to the SE. We present a 3D self-consistent anisotropic model of the Proterozoic and Archean upper mantle along the SW-NE profile in the south-central Finland. Boundaries of inter-growing wedges of the Proterozoic and Archean mantle lithospheres explain the longitudinal and shear wave propagation and polarization, mantle xenolith ages, surface wave tomography and location of the upper mantle reflectors. We interpret the six anisotropic domains as fragments of mantle lithosphere retaining an old fossil olivine fabric which was created before these micro-continents assembled.  相似文献   

18.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   

19.
The complex analysis of parameters characterizing the modern deformations of the Earth’s crust and upper mantle in the territory of the Mongolia-Siberian Area is made. Directions of principal tension axes of stress-tensors, calculated with the use of earthquake source mechanisms have been taken as parameters of modern deformations at the level of the middle crust; directions of axes of horizontal strains in the geodesic network by the GPS data have been taken as such parameters at the level of the Earth’s surface. The strain parameters for the mantle depths are the data on seismic anisotropy derived from the published sources about the results of studies on splitting of transversal waves from distant earthquakes. Seismic anisotropy is interpreted as the ordered orientation of olivine crystals, which appears with great strains resulting from the flow of the mantle material. It has been shown that directions of extensional strain axes (minimal compression) by geodesic and seismological data coincide with anisotropy directions in the upper mantle in the region whose median value is 310°–320°. The observed mechanical coupling of the crust and the upper mantle of the Mongolia-Siberian Mobile Area shows the participation of the lithospheric mantle in the formation of neotectonical structures and enables us to distinguish the principal processes determining the Late Cenozoic tectogenesis in this territory. One of the leading mechanisms for the neotectonical and modern deformations of the Mongolia-Siberian Region is the large-scale NW-SE material flow in the upper mantle causing both motion of the entire northern part of the continent and divergence of the Eurasia and the Amurian Plate. Lithospheric deformations in the western part of the region are related to collision-induced compression, while those in the central part are caused by interaction of these large-scale tectonic processes.  相似文献   

20.
Seismic anisotropy and its main features along the convergent boundary between Africa and Iberia are detected through the analysis of teleseismic shear-wave splitting.Waveform data generated by 95 teleseismic events recorded at 17 broadband stations deployed in the western Mediterranean region are used in the present study.Although the station coverage is not uniform in the Iberian Peninsula and northwest Africa,significant variations in the fast polarization directions and delay times are observed at stations located at different tectonic domains.Fast polarization directions are oriented predominantly NW-SE at most stations which are close to the plate boundary and in central Iberia;being consistent with the absolute plate motion in the region.In the northern part of the Iberian Peninsula,fast velocity directions are oriented nearly E—W;coincident with previous results.Few stations located slightly north of the plate boundary and to the southeast of Iberia show E—W to NE-SW fast velocity directions,which may be related to the Alpine Orogeny and the extension direction in Iberia.Delay times vary significantly between 0.2 and 1.9 s for individual measurements,reflecting a highly anisotropic structure beneath the recording stations.The relative motion between Africa and Iberia represents the main reason for the observed NW-SE orientations of the fast velocity directions.However,different causes of anisotropy have also to be considered to explain the wide range of the splitting pattern observed in the western Mediterranean region.Many geophysical observations such as the low Pn velocity,lower lithospheric Q values,higher heat flow and the presence of high conductive features support the mantle How in the western Mediterranean,which may contribute and even modify the splitting pattern beneath the studied region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号