共查询到20条相似文献,搜索用时 62 毫秒
1.
利用2010—2014年地面观测站(包括288个海岛站、380个沿海气象站、28个浮标站、37个船舶站、53个气象观测塔、13个海上平台站、9个沿海风廓线仪等)和高空气象观测站资料,采用天气学分型和统计分析方法,对2010—2014年285次中国近海6级及以上大风天气个例进行了分析,将近海的大风天气过程归纳为冷空气型、温带气旋型和热带气旋型3种类型。其中冷空气型又分为小槽东移型、小槽发展型和横槽转竖型;温带气旋型又分为东海气旋型、黄渤海气旋型和蒙古气旋型。这些分型可为海上大风预报预警提供天气学背景参考依据。 相似文献
2.
我国近海大风分布特征及成因 总被引:5,自引:3,他引:5
采用高分辨率卫星资料研究了我国近海6级以上大风的分布特征,并对台湾岛地形对四季的大风的影响进行了数值模拟研究。资料分析表明,冬季大风分布与冬季平均风速分布相似,高频区出现在台湾海峡、巴士海峡和越南东南沿海,黑潮锋暖侧的风频明显大于其冷侧的风频。春季大风频率显著下降,最大值依然出现在台湾海峡,巴士海峡、台湾岛东南角和黑潮锋暖侧也是春季近海风频较大的区域。夏季是近海大风出现最少的季节,风频最大值在10°N附近的南海西部,由西南向东北减少,台湾岛周围的风频呈现东南、西北大,西南、东北小的近似轴对称分布,大风方向为绕岛逆时针环流。秋季大风风频迅速增大,基本呈现出冬季的形态。数值模拟表明,不同季节地形对大风的影响程度不同,冬季台湾岛地形对其周围海区大风的形成有重要贡献,去除地形后,台湾海峡和岛屿东南角的大风消失,风速变为由南向北递减。夏季去除地形后,岛屿周围的大风几乎没有改变,本文将从大风产生的原因对其进行解释。 相似文献
3.
用短期大风资料推算极值风速的一种方法 总被引:2,自引:0,他引:2
根据复合极值分布理论,试用二项—对数正态复合极值分布,利用海上短期实测大风资料求算海面多年一遇极值风速,并以此作为基础值,以沿岸站长年代大风经验公式计算风速为订正值,基础值与订正值的叠加作为海面多年一遇工程设计风速。该方法计算结果与皮尔逊Ⅲ型、泊松—龚贝尔复合极值分布计算结果相近,较单纯由二项—对数正态分布计算稳定度增大。 相似文献
4.
利用常规气象观测资料和自动站等非常规观测资料以及美国国家环境预报中心(NECP/NCAR1°×1°)再分析资料,对2017年11月17—18日一次强冷空气引发的江苏省北部近海大风天气的影响系统及物理量场特征进行了诊断分析。结果表明,1)高空横槽转竖使得强冷空气南下影响江苏省,造成气压梯度、变压梯度加大,气压梯度在大风形成的初期起主导作用,变压梯度有利于强风的维持。2)大风期间高层深厚的冷平流自上而下形成一条后倾式冷平流传输通道,地面风场加强,冷平流区明显下传发展。3)动量下传在此次过程中亦起了重要作用,大风形成初期,低层700—1 000 hPa出现低空动量下传并影响地面风场;高空槽过境后,高空动量能够影响地面风场。 相似文献
5.
基于CCMP风场的中国近海18个海区海面大风季节变化特征分析 总被引:3,自引:0,他引:3
利用1988-2010年CCMP(Cross Calibrated Multi-Platform)高时空分辨率10 m风场分析了我国近海海区的大风(6级以上)日数和大风风速的空间分布特征,并且按照中央气象台对近海海区的划分,分析了近海18个海区大风的季节变化特征.我国近海大风日数高值中心及大风风速高值中心都集中于巴士海峡、台湾海峡和南海东北部海域,在巴士海峡和南海东北部海域交界处最高可达140天以上,平均大风风速达到13m/s以上.从季节变化来看,大风日数和大风风速充分体现了东亚季风冬强夏弱的特点.冬半年,大风日数及风速高值中心一直位于东海东北部、台湾海峡、巴士海峡、南海东北部以及南海西南部海域,12月是一年之中大风日数和强度的峰值时期.从4月开始,南海西南部的高值中心消失,而以北海域的高值区的分布基本不变,这种情况一直持续到9月.近海18个海区的季节变化呈现出不同的区域差别,南海中部和南部的4个海域大风日数呈双峰型变化,冬季的12月至次年1月出现最高值,夏季西南季风时期的7-8月出现次高值.除琼州海峡外,包括南海北部海域的其余13个海区高值均在冬季12月至次年1月,低值出现在夏季6-7月. 相似文献
6.
7.
中国大风集中程度及气候趋势研究 总被引:3,自引:0,他引:3
利用1961—2010年中国553个地面气象站大风资料,并且定义和采用大风集中度和大风集中期的方法,讨论了大风日数年内分布形态的时空特征。结果表明:中国大风日数呈现出西多东少的空间分布特点。近50 a来全国范围内,大风日数都具有减少的变化趋势,其中青藏高原地区减少趋势最显著。在大风天气的年内分布形态上,青藏高原地区出现的大风天气较为集中;而内蒙古地区的大风天气较为分散。青藏高原地区大风集中期最早;而东南沿海地区大风集中期最晚。近50 a来中国大风集中度均有增加的趋势,其中东南沿海地区增加最显著;内蒙古地区和华北地区的大风集中期有显著增加的趋势。同时,西太平洋副热带高压强度、北半球极涡强度和欧亚经向环流型与中国大风集中度的变化关系密切。 相似文献
8.
中国降水极值变化趋势检测 总被引:206,自引:9,他引:206
利用中国296个分布均匀的测站的逐日降水资料,研究了中国过去45a中降水量、降水频率、降水强度等方面的极值变化趋势。结果表明,总体上讲,中国年降水量、1日和3日最大降水量以及不同级别的强降水总量没有发现明显的极端化倾向,但伴随着降水日数极端偏多的区域范围越来越小的变化趋势,平均降水强度极端偏高的区域范围表现为扩大的趋势。中国降水极值变化还反映出明显的区域性特点。在中国东部,平均降水强度极值出现的范围趋于扩大。如华北地区在年降水量明显趋于减少的同时,年降水量极端偏多的范围减少,1日和3日最大降水量、日降水≥50mm和100mm的暴雨日数极端偏多的情况也趋于减少,而平均降水强度极值显著增加。在年降水明显趋于增多的西北西部地区,降水日数的极值变化趋势不明显,但年降水量、1日和3日最大降水量以及日降水≥10mm的降水总量极端偏多的区域范围均反映出趋于增加的变化趋势。 相似文献
9.
山东省雷暴大风天气的气候特征 总被引:1,自引:0,他引:1
应用1971-2008年山东省122个气象站观测资料,对山东省雷暴大风等强对流天气的气候特征进行了分析,并与冰雹天气的气候特征进行了对比。结果表明:山东省雷暴大风年均为46.6d,区域性雷暴大风年均为15.7d,随年代有明显减少的趋势。山东的雷暴大风主要集中在5—8月,7月最多。雷暴大风的地理分布极不均匀,大部分地区年均在l~3d。雷暴大风的影响范围较大,最多可达87个测站。雷暴大风的极大风力一般在8—9级,最大可达12级,极大风速的风向以西北风最多,但在7月以西南大风最多。雷暴大风与冰雹相比,二者出现月份和影响范围有明显差异,冰雹主要集中在4—6月,冰雹影响的范围远小于雷暴大风。 相似文献
10.
采用Poisson-Weibull复合极值分布方法对湛江近海36年的风暴过程资料进行统计分析。推算出湛江近海的多年一遇设计风速,并单一因素设计方法进行比较。计算结果表明,复合极值统计模式计算结果较稳定。 相似文献
11.
基于CCMP风场的近22年中国海海表风场特征分析 总被引:9,自引:0,他引:9
利用ESE(NASA Earth Science Enterprise)提供的1987 年7 月-2009 年12 月CCMP(Cross-Calibrated,Multi-Platform)风场资料,对中国海近22 年的海表风场特征进行分析.结果表明,中国海的海表风场具有明显的季节变化;6 级以上大风频率的高值中心集... 相似文献
12.
13.
14.
分别从质量控制级别、有效数据完整率、是否均一等方面考虑,选取安徽省51个气象站1981—2020年逐日10 min最大风速和2006—2020年逐日极大风速资料,基于最大风速资料应用阵风系数法构建1981—2005年极大风速,得到1981—2020年极大风速的长时间序列数据;对风速资料进行拟合适度检验,估算了安徽省不同重现期最大风速和极大风速的时间变化以及空间分布,并对极大风速序列延长前后重现期估算情况进行了对比。结果表明:(1)利用阵风系数法构建的极大风速数据可信,可为因缺少长时间序列的极大风速观测而无法进行50年或者更长重现期估算提供参考;(2) 1981—2020年安徽省历年最大风速强度为12.38 m/s,极大风速强度为20.55 m/s,均为皖南低矮山区的风速值较低,沿江西部及江淮之间中部处于相对大值区;(3) 30年重现期最大风速为12.09~27.23 m/s,50年为12.64~29.01 m/s,均是石台站最小,桐城站最大;30年重现期的极大风速为23.51~39.56 m/s,50年为24.58~41.93 m/s,均为池州站最小,桐城站最大;(4)短期的观测资料会... 相似文献
15.
16.
南海北部海域气溶胶光学厚度研究 总被引:2,自引:0,他引:2
气溶胶光学厚度是大气校正所需要的重要参数.利用2006年9月7~30日中科院南海海洋研究所公开航次的多波段太阳光度计资料,得到了南海北部海域的气溶胶光学厚度.分析结果表明,南海北部海域气溶胶光学厚度在一天内的变化非常明显,最小值可达0.1(870 nm),最大值为0.9(440 nm),而日平均气溶胶光学厚度在0.2~0.6之间.结合同步观测气象数据,发现从陆地方向吹来的风,当风速达4 m/s,对气溶胶的光学厚度有非常明显的影响,而从大洋方向吹来的风,对气溶胶的光学厚度影响不明显. 相似文献
17.
林爱兰 《热带气象学报(英文版)》1998,4(2):141-147
Using 1975-1993 (with 1978 missing) data of the outgoing longwave radiation (OLR), characteristics of seasonal variation of low-frequency oscillations in the South China Sea and its relation to the establishment and activity of the summer monsoon there are studied. As is shown in the result, the low-frequency oscillation in the South China Sea is much stronger in the period of summer monsoon than in that of winter monsoon and the summer monsoon there usually begins to set up in a negative phase of the first significant low-frequency oscillation for the early summer. The study also reveals that the circulation for the low-frequency oscillation during the summer monsoon in the Sea is embodied as north-south fluctuations of the ITCZ and east-west shifts of western ridge point of the West Pacific subtropical high, suggesting close correlation between the low-frequency oscillation and the active and break (decay) of the South China Sea monsoon. In the meantime. the work illustrates how the low-frequency oscillation in the South China Sea are superimposed with the seasonal variation of the general circulation. so that the summer inonsoon covers the establishment of the Ist, intensification of the 2nd and 3rd the low-frequency oscillations and decay of the 4th oscillation. 相似文献
18.
A NUMERICAL STUDY OF THE INFLUENCE OF SEA SURFACE TEMPERATURES WITH DIFFERENT TEMPORAL RESOLUTIONS ON
TYPHOON DUJUAN OVER THE SOUTH CHINA SEA 总被引:1,自引:0,他引:1
Daily and weekly sea surface temperature data of Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager and Advanced Microwave Scanning Radiometer-Earth Observing System sensors are
used as forcing of the underlying sea surface in the mesoscale numerical model to simulate Typhoon
Dujuan that moved across the South China Sea in 2003. The numerical results show that different SSTs
near the typhoon center result in differences in the atmospheric wind field, indicating that the model has a
fast and obvious response to SSTs. Different SST influences the intensity and track of Dujuan to some
degree and has significant impacts on its precipitation and latent heat flux near the eye. The SST influence
on Dujuan is mainly fulfilled by changing the latent heat flux between the ocean surface and the
atmosphere above. 相似文献
19.
针对南海海面气象资料稀少、海陆交界处风资料又很不连续的情况,在做南海海面风场的细网格客观分析时,本文充分考虑海域和周围陆地的气压信息,用新的“四点法”扫描先做气压客观分析,然后才用假地转(梯度)风原理和实况风记录的订正去求得格点风资料。根据本分析原理设计成一整套功能齐全的微机计算和资料管理程序,操作方便,计算省时。经五个月的业务试用效果良好。 相似文献
20.
南海地区降水的时空特征 总被引:30,自引:3,他引:30
文中利用美国 NCEP重分析资料中的 1 979~ 1 995年 1 7a逐旬的全球降水资料 ,采用小波分析方法分析了南海地区降水的多时间层次和多空间层次结构 ,研究了南海季风的爆发及时间演变 ,探讨了南海季风爆发的机制。结果表明 :( 1 )南海季风爆发于 5月中旬 ,季风爆发过程实际上是小范围 ( 32个经度 )降水向大范围 ( 64个经度 )降水调整的过程 ,一旦出现较强的大范围降水 ,并到达南海地区 ,就爆发了南海季风 ,调整完毕则是印度季风和东亚季风的相继爆发。( 2 )在 1 0°N以北的地区 ,季风最早发生在南海 ,然后逐渐西移到印度 ,达到印度季风最盛期后 ,迅速东撤。( 3)南海地区可分为 3个区域 :北部 ( 2 0~ 2 2°N)、中部 ( 1 0~ 2 0°N)和南部 ( 1 0°N以南 )。南海雨季主要发生在 1 0°N以北的北部和中部 ,北部雨季是平稳增强的单峰型 ,而中部雨季是突发性的 ,雨季内降水起伏较大。( 4 )南海季风区有很强的年变化 ,30~ 60 d和 2 0~30 d的变化也比较显著 ,还有 3个月左右的周期变化。除年振荡以外 ,各种周期振荡随时间变化较大 ,在雨季表现得最强烈。( 5)南海季风的爆发与 2 0~ 30 d和 30~ 60 d两种低频振荡有关。 相似文献