首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial and temporal patterns of spring break‐up flooding in the Slave River Delta (SRD), Northwest Territories, are characterized during three years (2003–2005) using water isotope tracers and total inorganic suspended sediment (TSS) concentrations measured from lakewater samples collected shortly after the spring melt. Strongly contrasting spring melt periods led to a moderate flood in 2003, no flooding in 2004 and widespread flooding in 2005. Flooded lakes have isotopically‐depleted δ18O (δ2H) signatures, ranging between ? 19·2‰ (?145‰) and ? 17·1‰ (?146‰) and most have high TSS concentrations (>10 mg L?1), while non‐flooded lakes have more isotopically‐enriched δ18O (δ2H) signatures, ranging between ? 18·2‰ (?149‰) and ? 10·6‰ (?118‰) and low TSS concentrations (<10 mg L?1). These results, in conjunction with the isotopic signatures of Slave River water and snowmelt, are used to estimate the proportion of river‐ or snowmelt‐induced dilution in delta lakes during the spring of each study year. Calculations indicate river flooding caused dilution of ~70–100% in delta lakes, while snowmelt dilution in the absence of river flooding ranged from ~0–56%. A positive relationship exists between the spatial extent of spring flooding in the SRD and level and discharge on the Slave River and upstream tributaries, suggesting that upstream flow generation plays a key role in determining the magnitude of spring flooding in the SRD. Parallel variations in the 46‐year instrumental Slave River discharge record and flood stratigraphy in the active delta indicate that there is potential for extending the flood history of the SRD, a development that will contribute to a more robust understanding of the drivers of historic, contemporary and future flood frequency in the delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Earlier efforts have been geared towards modelling the hydrological water balance of the Mackenzie River basin and its sub‐basins using a coupled land surface–hydrological model for the Canadian cold region known as WATCLASS. The goal of this current study is to effectively inter‐compare the resulting total water storage anomalies estimated from the gravity recovery and climate experiment (GRACE) satellite analysis with those estimated from the atmospheric‐based water balance approach as well as the model output from WATCLASS over the 1 · 8 × 106 km2 Mackenzie River basin in Canada. Since the success of the parameter estimation stage of the coupled land surface–hydrological model, WATCLASS over this large catchment, was entirely based on a goodness of fit between the simulated and observed flows, it is often desirable to assess the reliability of the generated state variables prior to concluding on the overall efficiency of this model in reproducing the relevant hydrological processes over this region. A major challenge here lies in finding suitable dataset with which this comparison can be made to further assess the ability of the model in accurately reproducing other mass fluxes. The outcome of this inter‐comparison reveals the potential application of the GRACE‐based approach as a veritable tool required for the closure of the hydrological water balance of the Mackenzie River basin as well as serving as a dependable source of data for the calibration of traditional hydrological models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Saturated floodplains in Arctic deltas provide conditions favourable for frost mound growth. Little work has been reported from these settings to determine the origin of frost mounds and the controls on their distribution, to assess the longevity of individual mounds, or to quantify variation of mound distribution over time. A case study is presented on low mounds in low‐centred syngenetic ice‐wedge polygons of Big Lake Delta Plain, outer Mackenzie Delta. In 2008 and 2009, 12 mounds were examined by drilling to describe their morphologic variations and to investigate their growth processes. The mounds, containing a core of ice 15 to 58 cm thick, were less than 1 m high and 3 · 7 to 8 · 5 m in diameter; other mounds were over 10 m long. Organic inclusions in the ice, bubble densities, electrical conductivity profiles, and ice‐crystal structure indicated that the mounds were hydrostatic frost blisters. Up to six frost blisters were found within individual polygons due to the relatively small volume of water needed to create each mound. Frost‐blister densities, of greater than 1700 km–2, increased toward the wet centres of alluvial islands down gentle topographic gradients. The frost blisters were perennial, with individuals remaining identifiable on aerial photographs and satellite images for up to 10 years. Frost blisters collapsed along dilation cracks opened by hydrostatic uplift and by thawing from their sides caused by snow drifting and water ponding. Cyclical growth and decay of the mounds may degrade the visible polygonal network over time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, the Hillslope River Routing (HRR) model was modified for arctic river basin applications and used to route surface and subsurface run‐off from the Community Land Model (CLM) in the Mackenzie River Basin (MRB) for the period 2000–2004. The HRR modelling framework performs lateral surface and subsurface run‐off routing from hillslopes and channel/floodplain routing. The HRR model was modified here to include a variable subsurface active layer thickness (ALT; permafrost) to enable subsurface water to resurface, a distributed surface storage component to store and attenuate the rapid generation of snowmelt water, compound hillslopes to account for the low relief near rivers and floodplains, and reservoir routing to complete the total surface and subsurface water storage accounting. To illustrate the new HRR model components, a case study is presented for the MRB. The basin is discretized into 5077 sub‐basins based on a drainage network derived from the global digital elevation model (DEM) developed from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor on board NASA's Terra satellite and river widths extracted from LandSat images. The median hillslope land area is 68.5 km2 with a flow length of 2.8 km. Gridded CLM surface and subsurface run‐offs are remapped to the HRR model's irregular sub‐basins. The role of each new model component is quantified in terms of peak annual streamflow (magnitude and timing) at select locations and basin‐wide total water storage anomalies. The role of distributed surface storage is shown to attenuate the relatively rapid generation of snowmelt water, impact the annual peak hydrograph (reduced peaks by >30% and detailed peak by >20 days), and account for 20% of the monthly total water storage anomalies averaged over the year and ranging from 14 to 25% (?10 to 30 mm) throughout the year. Although additional research is needed to dynamically link spatially distributed ALT to HRR, the role of ALT is shown to be important. A basin‐wide, uniform 1 m ALT impacts the annual peak hydrograph (reduced peaks by 9% and detailed peak by 8 days) and trends in total water storage anomalies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, NSGA‐II is applied to multireservoir system optimization. Here, a four‐dimensional multireservoir system in the Han River basin was formulated. Two objective functions and three cases having different constraint conditions are used to achieve nondominated solutions. NSGA‐II effectively determines these solutions without being subject to any user‐defined penalty function, as it is applied to a multireservoir system optimization having a number of constraints (here, 246), multi‐objectives, and infeasible initial solutions. Most research by multi‐objective genetic algorithms only reveals a trade‐off in the objective function space present, and thus the decision maker must reanalyse this trade‐off relationship in order to obtain information on the decision variable. Contrastingly, this study suggests a method for identifying the best solutions among the nondominated ones by analysing the relation between objective function values and decision variables. Our conclusions demonstrated that NSGA‐II performs well in multireservoir system optimization having multi‐objectives. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Temporal and spatial variability in extreme quantile anomalies of seasonal and annual maximum river flows was studied for 41 gauging stations at rivers in the Upper Vistula River basin, Poland. Using the quantile perturbation method, the temporal variability in anomalies was analysed. Interdecadal oscillating components were extracted from the series of anomalies using the Hilbert‐Huang transform method. Period length, part of variance of each component, and part of unexplained variance were assessed. Results show an oscillating pattern in the temporal occurrence of extreme flow quantiles with clusters of high values in the 1960–1970s and since the late 1990s and of low values in the 1980s and at the beginning of the 1990s. The anomalies show a high variability on the right bank of the Upper Vistula River basin during the summer season with the highest values in catchments located in the western and south‐western parts of the basin. River flow extreme quantiles were found to be associated with large‐scale climatic variables from the regions of the North Atlantic Ocean, Scandinavia, Eastern Europe, Asia, and, to a lesser extent, the Pacific Ocean. Similarities between temporal variability of river flows and climatic factors were revealed. Results of the study are important for flood frequency analysis because a long observation period is necessary to capture clusters of high and low river flows.  相似文献   

9.
Before 1900, the Missouri–Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987–2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water‐ and sediment‐discharge data indicates that the dams alone are not the sole cause. These dams trap about 100–150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended‐sediment concentration suggest that the Missouri–Mississippi has been transformed from a transport‐limited to a supply‐limited system. Thus, other engineering activities such as meander cutoffs, river‐training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre‐1900 state, mainly because of the numerous smaller engineering structures and other soil‐retention works throughout the Missouri–Mississippi system. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

10.
11.
In this article the relative roles of precipitation and soil moisture in influencing runoff variability in the Mekong River basin are addressed. The factors controlling runoff generation are analysed in a calibrated macro‐scale hydrologic model, and it is demonstrated that, in addition to rainfall, simulated soil moisture plays a decisive role in establishing the timing and amount of generated runoff. Soil moisture is a variable with a long memory for antecedent hydrologic fluxes that is influenced by soil hydrologic parameters, topography, and land cover type. The influence of land cover on soil moisture implies significant hydrologic consequences for large‐scale deforestation and expansion of agricultural land. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Climate change may affect magnitude and frequency of regional extreme events with possibility of serious impacts on the existing infrastructure systems. This study investigates how the current spatial and temporal variations of extreme events are affected by climate change in the Upper Thames River basin, Ontario, Canada. A weather generator model is implemented to obtain daily time series of three climate variables for two future climate scenarios. The daily time series are disaggregated into hourly to capture characteristics of intense and rapidly changing storms. The maximum annual precipitation events for five short durations, 6‐, 12‐, 24‐, 48‐, and 72‐h durations, at each station are extracted from the generated hourly data. The frequency and seasonality analyses are conducted to investigate the temporal and spatial variability of extreme precipitation events corresponding to each duration. In addition, this study investigates the impacts of increase in temperature using reliability, resilience, and vulnerability. The results indicate that the extreme precipitation events under climate change will occur earlier than in the past. In addition, episodes of extremely high temperature may last longer up to 19·7% than under the no‐change climate scenario. This study points out that the revision of the design storms (e.g. 100‐ or 250‐year return period) is warranted for the west and the south east region of the basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The measurement of river discharge is necessary for understanding many water‐related issues. Traditionally, river discharge is estimated by measuring water stage and converting the measurement to discharge by using a stage–discharge rating curve. Our proposed method for the first time couples the measurement of water‐surface width with river width–stage and stage–discharge rating curves by using very high‐resolution satellite data. We used it to estimate the discharge in the Yangtze (Changjiang) River as a case study. The discharges estimated at four stations from five QuickBird‐2 images matched the ground observation data very well, demonstrating that the proposed approach can be regarded as ancillary to traditional field measurement methods or other remote methods to estimate river discharge. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Chen Sun  Li Ren 《水文研究》2013,27(8):1200-1222
Quantitative assessment of surface water resources (SWRs) and evapotranspiration (ET) is essential and significant for reasonably planning and managing water resources in the Haihe River basin which is facing severe water shortage. In this study, a distributed hydrological model of the Haihe River basin was constructed using the Soil and Water Assessment Tool, well considering the reservoirs and agricultural management practices for reasonable simulation. The crop parameters were independently calibrated with the observed crop data at six experimental stations. Then, sensitivity ranks of hydrological parameters were analysed, which suggested the important parameters used for calibration. The model was successfully calibrated using the monthly observed data of discharge in around 1970–1991 and actual ET (ETa) in 2002–2004 for the mountainous area and Haihe plain, respectively. Meanwhile, good agreements between the simulated and statistical crop yields in 1985–2005 further verified the model's appropriateness. Finally, the calibrated model was used to assess SWRs and ETa in time and space during 1961–2005. Results showed that the average annual natural SWRs and the ETa were about 17.5 billion cubic metre and 542 mm, respectively, both with a slight downward trend. The spatial distributions of both SWRs and ETa were significantly impacted by variations of precipitation and land use. Moreover, the reservoir in operation was the main factor for the noticeable decline of actual SWRs. In the Haihe plain, the ETa with irrigation was increased by 46% compared with that under rainfed conditions. In addition, this study identified the regions with potential to improve the irrigation effects on water use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Seasonal water storage change of the Yangtze River basin detected by GRACE   总被引:14,自引:0,他引:14  
1 Introduction Large-scale mass redistribution, or temporal varia- tion of mass within the Earth system, the driving force of interactions between solid Earth and geophysical fluids envelope (i.e., atmosphere, ocean, and hydro- sphere), is an important geophysical process critical to human life. Most of the interactions between solid Earth and the atmosphere/oceans happen at seasonal and inter-annual time scales. One important contribu- tor of mass redistribution at seasonal and inter-annual …  相似文献   

16.
Abstract

River flow conditions in many watersheds of Iceland are particularly disturbed during winter by the formation, drifting and accumulation of river ice, whose impact on water encroachment and extent of inundations is not reflected in the discharge records. It is therefore necessary to use river discharge with great caution when assessing the magnitude of past inundations in Iceland, and to give attention to other flood magnitude parameters. A GIS-based methodology is presented that focuses on inundation extent as an alternative parameter for the assessment and ranking of the magnitude of past flooding events in the Ölfusá-Hvítá basin, known as one of the most dangerous flood-prone river complexes in Iceland. Relying ultimately on a macro-scale grid, the method enabled the reconstruction of the extent of inundations, the delineation of the flood plain, and, finally, some estimation of the likelihood of flooding of exposed areas that include marine submergences and river floods for both open water and ice conditions.

Citation Pagneux, E., Gísladóttir, G. & Snorrason, Á. (2010) Inundation extent as a key parameter for assessing the magnitude and return period of flooding events in southern Iceland. Hydrol. Sci. J. 55(5), 704–716.  相似文献   

17.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
基于淮河流域9个水文站的月径流量数据,采用Pettitt非参数检验法、GAMLSS模型与洪水频率分析模型等方法,揭示了淮河中上游洪水频率的演变规律,分析基于平稳性和非平稳性条件下的洪水发生强度及洪涝灾害所带来的影响.研究发现:潢川、横排头和蚌埠站点未发生明显变异,其余6个站点发生均值或方差变异,变异时间主要集中在2000年左右.淮河流域的最优拟合分布函数是Weibull;班台、蒋家集和横排头站适宜于非平稳性模型,其余站点选择平稳性模型.各站点非平稳性条件下10年和20年一遇设计流量值与平稳性条件下皮尔逊Ⅲ型分布设计流量值相差不大,但30年一遇、50年一遇和100年一遇的设计流量相差逐渐变大.横排头站和蚌埠站洪水放大因子随着时间增加呈上升趋势且大于1,百年一遇重现期不足80年.各站点年最大洪峰流量与淮河流域、安徽省水灾面积通过了95%或99%的显著性检验.  相似文献   

19.
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Stream‐gauge data indicate that the flow of the Yellow River has declined during the past several decades. Zero flow in sections of the river channel, i.e. the Yellow River drying‐up phenomenon, has occurred since the 1970s. In this paper we present an analysis of changes in the spatial patterns of climatic and vegetation condition data in the Yellow River basin based on data from meteorological stations and satellites. The climatic data are from 1960 to 2000 and the vegetation condition data are from 1982 to 2000. The angular‐distance‐weighted interpolation method is used to get climatic data coverage from station observations. The spatial distribution of tendency is detected with Student's t‐test. The spatial patterns of climatic and vegetation condition change was analysed together with the statistical data on human activities. The analysis indicates that the precipitation decreases and temperature increases in most parts of the Yellow River basin, the evaporative demand of the atmosphere decreases in the upper reaches and increases in the lower reaches, and human activities have improved the vegetation condition in the irrigation districts. The Loess Plateau, the Tibetan Plateau, and the irrigation districts are respectively suggested as precipitation, temperature, and human activity hot spots of the Yellow River drying‐up phenomenon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号