首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effects of widely applied organic waste amendment on soil Si and P bioavailability and their interaction have rarely been investigated. The study examined bioavailability and interaction of Si and P in response to pig slurry (PS) amendment in a coastal saline (CS) soil. The final purposes of the study are to assess fertilizer Si and P needs and to ensure environmental quality. The results show that PS amendment can cause accumulation of bioavailable Si in surface soil (0–20 cm), and significantly improve both soil bioavailable P content and soil P lability through PS‐Si and P input, and by the input of PS‐organic matter (OM) and enhancing the complexation of OM with soil Si and P. As a result of the Si‐P competitive sorption, Si shows a more rapid increase in bioavailability than P at the preliminary stage of PS amendment. However, under the weakly alkaline conditions as a result of relatively long term PS amendment, the fixation capacity of Si by soil solid components increases causing a rapider decline of Si bioavailability than that of P.  相似文献   

2.
Low cost lime‐based waste materials have recently been used to immobilize metals in contaminated soils. This study was conducted to evaluate the effects of oyster shells and eggshells as lime‐based waste materials on immobilization of cadmium (Cd) and lead (Pb) in contaminated soil, as well as their effects on metal availability to maize plants (Zea mays L.). Oyster shells and eggshells were applied to soils at 1 and 5% w/w, after which they were subject to 420 days of incubation. The toxicity characteristic leaching procedure (TCLP) test was employed to determine the mobility of Cd and Pb in soils. The results showed that the addition of waste materials effectively reduced the metal mobility as indicated by the decrease in the concentration of TCLP‐extractable Cd and Pb, and this was mainly due to significant increases in soil pH (from 6.74 in untreated soil to 7.85–8.13 in treated soil). A sequential extraction indicated that the addition of such alkaline wastes induced a significant decline in the concentration of Cd in the exchangeable fraction (from 23.64% in untreated soil to 1.90–3.81% in treated soil), but it increased the concentration of Cd in the carbonate fraction (from 19.59% in untreated soil to 36.66–46.36% in treated soil). In the case of Pb, the exchangeable fraction was also reduced (from 0.67% in untreated soil to 0.00–0.01% in treated soil), and the fraction of Pb bound to carbonate was slightly increased (from 16.61% in untreated soil to 16.41–18.25% in treated soil). Phytoavailability tests indicated that the metal concentrations in the shoots of maize plant were reduced by 63.39–77.29% for Cd and by 47.34–75.95% for Pb in the amended soils, with no significant differences being observed for the amendment types and the application rates. Overall, these results indicate that oyster shells and eggshells can be used as low cost lime‐based amendments for immobilizing Cd and Pb in contaminated soils.  相似文献   

3.
Three fluorescent dyes (Rhodamine WT, Lissamine FF and Amino G Acid) are compared for use in soil water tracing. Severe limitations are evident, but practical applications are possible. Background fluorescence, adsorption, desorption, pH and other non-adsorptive effects are reviewed in the contexts of soil column work and field tracing of soil water. Lissamine FF and Amino G Acid are to be preferred for soil column work because of their lower adsorption; Rhodamine WT exhibits higher adsorption but is useful in field situations where organic fluorescence backgrounds are high. Semi-quantitative work may be undertaken in soil columns once a priming and flushing procedure has been adopted.  相似文献   

4.
The degradation and leaching of napropamide were compared between Beach Ridges Interspersed with Swales (BRIS) soil samples, and the same soil samples amended with 20 mg ha?1 of either chicken dung (CD) or palm oil mill effluent (POME). The effects of removing dissolved organic carbon (DOC) from the soil samples on napropamide degradation and leaching were also studied. The addition of CD and POME to BRIS soil increased the napropamide half‐life values to 69 and 49.5 days, respectively. Sterilization of the soil samples resulted in partial inhibition of napropamide degradation in all soil samples. The half‐lives of napropamide in BRIS soils receiving 0, 20, 100, and 200 mg kg?1 of DOC derived from CD were 43, 46.2, 53.4, and 63 days, respectively. The napropamide half‐lives in soil samples treated with 0, 20, 100, and 200 mg kg?1 of DOC derived from POME were 43, 49.2, 57.7, and 69 days, respectively. However, in the sterilized soil samples, there were no significant effects of adding DOC derived from either CD or POME on napropamide half‐lives. Incorporating either CD or POME decreased napropamide leaching and total amounts of napropamide remained in the soil columns after two pore volumes of water has been leached were higher in the amended than the non‐amended soil. The CD was more effective in decreasing napropamide leaching than the POME. There were no effects of DOC on napropamide leaching in all soil treatments.  相似文献   

5.
Using a Simple Soil Column Method to Evaluate Soil Phosphorus Leaching Risk   总被引:3,自引:0,他引:3  
The impacts of soil P leaching on water eutrophication have widely been concerned. However, there is no dependable method to quantitatively estimate the P leaching risk of soils. In this study, a simple soil column method was developed using two calcareous Fluvisols, silt loam and loam. The soil column was 20 cm in length and 5 cm in diameter, and distilled water was continuously supplied from the top. The volume and dissolved reactive P (DRP) concentrations of leachate were measured. Results showed that DRP concentrations in leachate increased slowly for the low soil Olsen‐P levels but rapidly for the high Olsen‐P levels. According to these two‐phase changes in the DRP versus soil Olsen‐P contents, the thresholds of P leaching risk were estimated to be 41.1 and 62.3 mg P kg?1 (Olsen‐P) for silt loam and loam, respectively. The P leaching intensity of soils increased by 3‐ to 540‐fold if the soil Olsen‐P contents accumulated from 6.6 to 155.5 mg P kg?1. The outcomes derived from this study regarding the determination of P leaching threshold and intensity by the soil column method also need a further verification on more soils with a wide range of physical and chemical properties.  相似文献   

6.
Soil‐mix technology is effective for the construction of permeable reactive barriers (PRBs) for in situ groundwater treatment. The objective of this study was to perform initial experiments for the design of soil‐mix technology PRBs according to (i) sorption isotherm, (ii) reaction kinetics and (iii) mass balance of the contaminants. The four tested reactive systems were: (i) a granular zeolite (clinoptilolite–GZ), (ii) a granular organoclay (GO), (iii) a 1:1‐mixture GZ and model sandy clayey soil and (iv) a 1:1:1‐mixture of GZ, GO and model soil. The laboratory experiments consisted of batch tests (volume 900 mL and sorbent mass 18 g) with a multimetal solution of Pb, Cu, Zn, Cd and Ni. For the adsorption experiment, the initial concentrations ranged from 0.01 to 0.5 mM (2.5 to 30 mg/L). The maximum metal retention was measured in a batch test (300 mg/L for each metal, volume 900 mL, sorbent mass 90–4.5 g). The reactive material efficiency order was found to be GZ > GZ‐soil mix > GZ‐soil‐GO mix > GO. Langmuir isotherms modelled the adsorption, even in presence of a mixed cations solution. Adsorption was energetically favourable and spontaneous in all cases. Metals were removed according to the second order reaction kinetics; GZ and the 1:1‐mix were very similar. The maximum retention capacity was 0.1–0.2 mmol/g for Pb in the presence of clinoptilolite; for Cu, Zn, Cd and Ni, it was below 0.05 mmol/g for the four reactive systems. Mixing granular zeolite, organoclay and model soil increased the chemisorption. Providing that GZ is reactive enough for the specific conditions, GZ can be mixed to obtain the required sorption. Granular clinoptilolite addition to soil is recommended for PRBs for metal contaminated groundwater.  相似文献   

7.
8.
The potential application of bio‐based ester oils for use as lubricants in metal working has been investigated for sustainable production processes in the future. When waste edible and animal fats came into focus as starting materials, it was already proven, that ester oils produced from plant fats performed very well as cooling lubricants. Waste fats were first characterized by analyzing and monitoring samples for one complete year. Inorganic and organic contaminations were found to be low and without seasonal variations. Fatty acid methyl esters (FAME) were produced by transesterification of the waste fats and they were separated into fractions with saturated FAME or unsaturated FAME by fractional crystallisation (winterisation). Further transesterification with 2‐ethylhexanol led to products that could be successfully tested as lubricants. The development of an extraction process aimed at the recycling of oil containing grinding mud by enabling the recirculation of lubricating oil and reutilization of oil‐free metal chips.  相似文献   

9.
Dodecylammonium bentonite (DB) and dodecylammonium sepiolite (DS) were used as sorbents for phenoxyalkanoic acid herbicides 2,4‐D ((2,4‐dichlorophenoxy)acetic acid), 2,4‐DP ((RS)‐2‐(2,4‐dichlorophenoxy)propionic acid), 2,4‐DB (4‐(2,4‐dichlorophenoxy)butyric acid), 2,4,5‐T ((2,4,5‐trichlorophenoxy)acetic acid), and MCPA ((4‐chloro‐2‐methylphenoxy)acetic acid). Langmuir, Freundlich, and the linear Henry’s Law isotherm adsorption parameters were calculated from the adsorption isotherms. Langmuir equation showed poor fit for both adsorbents. According to the evaluation using the Freundlich equation, the DS sample showed much higher and stronger sorption capacity than DB. Similar behaviour was also observed in the case of the linear Henry’s Law isotherm. The adsorption of the herbicides on both DB and DS decreased in the order of 2,4‐DB > 2,4,5‐T > 2,4‐DP > 2,4‐D > MCPA.  相似文献   

10.
Recycling the large amounts of organic wastes produced by agriculture, forestry, urban and industrial activities as soil, organic amendments are the most popular and efficient option for avoiding their dispersion in the environment and restoring, maintaining, and/or improving the content of soil organic matter. Chemical stability and biological maturity are two important factors for the successful use of organic wastes in agriculture with limited risk for the surrounding environment. Stabilization and maturation of raw organic wastes inherently imply the achievement of an extensive humification, that is, a wide conversion of easily degradable organic matter to refractory organic compounds that resemble native soil humic substances (HS). Soil HS are the most important components of soil organic matter responsible of several soil functions and processes. As a consequence, the amount and quality of HS‐like fractions in any organic amendment are believed to be of primary importance for its agronomic efficacy, environmental safety and economic value. The first part of this review focuses on the chemical and physico‐chemical changes occurring in the humic substances (HS) ‐like fractions of organic wastes of various nature and sources subjected to common treatment processes aimed at producing environmentally‐safe soil amendments with beneficial agronomic properties. The second part discusses the composition, structure, and chemical reactivity of the HS‐like components in organic amendments of various origins and nature, and their effects on native soil HS. The review concludes by highlighting the need for innovative research targeted mainly to achieve a better fundamental understanding of the molecular structure and reactivity of soil HS and HS‐like fractions in organic amendments, the mechanisms of HS formation and transformations in the natural environment and during the treatment processes of raw organic wastes, the interactions with metals and organic xenobiotics, and the direct physiological effects that HS may exert on plants.  相似文献   

11.
A pore‐scale model based on measured particle size distributions has been used to quantify the changes in pore space geometry of packed soil columns resulting from a dilution in electrolyte concentration from 500 to 1 mmol l?1 NaCl during leaching. This was applied to examine the effects of particle release and re‐deposition on pore structure and hydraulic properties. Two different soils, an agricultural soil and a mining residue, were investigated with respect to the change in hydraulic properties. The mining residue was much more affected by this process with the water saturated hydraulic conductivity decreasing to 0·4% of the initial value and the air‐entry value changing from 20 to 50 cm. For agricultural soil, there was little detectable shift in the water retention curve but the saturated hydraulic conductivity decreased to 8·5% of the initial value. This was attributed to localized pore clogging (similar to a surface seal) affecting hydraulic conductivity, but not the microscopically measured pore‐size distribution or water retention. We modelled the soil structure at the pore scale to explain the different responses of the two soils to the experimental conditions. The size of the pores was determined as a function of deposited clay particles. The modal pore size of the agricultural soil as indicated by the constant water retention curve was 45 µm and was not affected by the leaching process. In the case of the mining residue, the mode changed from 75 to 45 µm. This reduction of pore size corresponds to an increase of capillary forces that is related to the measured shift of the water retention curve. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Simulating nonequilibrium transport of atrazine through saturated soil   总被引:5,自引:0,他引:5  
Mao M  Ren L 《Ground water》2004,42(4):500-508
Atrazine, an herbicide widely used for selective control of grassy weeds in the fields where maize is grown, is a potential ground water contaminant in China and, consequently, there is interest in predicting its mobility in agricultural soils. In this study, we determined the nonequilibrium transport characteristics of atrazine in Shahe soil (Beijing sandy loam) using the advection-dispersion equation, and using a sensitivity analysis, we evaluated the contribution of the uncertainty in a given input parameter to the overall uncertainty in model results. The asymmetrical shape and tailing of the atrazine breakthrough curve (BTC) showed that atrazine was subject to nonequilibrium transport. The observed atrazine BTC was best fitted by the chemical nonequilibrium model with a nonlinear least-squares optimization approach. Results from the sensitivity analysis indicated that the retardation factor was the most sensitive parameter. Considering the reliability of the estimated parameters, the best fit to the atrazine BTC was obtained by fixing the retardation factor based on the linear distribution coefficient, and by calculating the dispersion coefficient from the bromide BTC and the average pore water velocity from the measured data; nonequilibrium parameters were the only unknown parameters that were optimized. Model verification procedures were based on best-fit parameters optimized from one soil column experiment and applied to simulate the transport of atrazine in the duplicate experiment. The results showed there was good agreement between measured and simulated concentrations for atrazine leaching in the soil column.  相似文献   

13.
A greenhouse pot experiment was conducted to investigate the effect of compost addition on the phytoremediation ability of Medicago sativa, Brassica napus, and Lolium perenne in soils contaminated with pyrene. Pyrene concentrations were evaluated after 90 days in contaminated uncultivated amended‐soil, cultivated amended‐soils, and shoots and roots of the three plant species. The addition of compost enhances significantly pyrene dissipation from 16 to 26% in uncultivated soil, whereas in cultivated soils it appears not to have any significant effect on pyrene dissipation, neither pyrene was detectable in shoots and roots of the three species examined. The high partition coefficient of pyrene to compost dissolved organic matter (DOM) and the molar absorptivity values at 280 nm (ε280) indicate a high affinity of pyrene to compost DOM molecules, likely due to their aromatic character. These results suggest that compost improves pyrene removal from soil, possibly by promoting its adsorption onto compost DOM. This property is very important in indicating that compost can be used, besides for its amendment capacity, also as a potential tool for remediation of contaminated soils.  相似文献   

14.
Seasonal variation in potential water repellence has not been widely reported in the literature, and little is known of the processes that cause changes in potential water repellence. In this study, the severity and stability of potential water repellence varied seasonally from being weakly hydrophobic in July 2009 (water drop penetration time, 0.19 min; water entry potential, 0.0 cm) to severely hydrophobic (water drop penetration time, 54 min; water entry potential, 14.3 cm) in May 2009. Seasonal variation in the stability of potential water repellence was significantly correlated with cumulative rainfall, air temperature and soil water deficit, which indicated that the accumulation of water‐repellent compounds, presumably polar waxes, resulted from microbial or plant inputs to the soil. Laboratory experiments demonstrated that saturating and mixing the soil resulted in a two to three order of magnitude reduction in the stability of potential water repellence, even after oven drying at 40 °C and 60 °C. Repeated leaching resulted in sequential reduction in both the stability and severity of water repellence. The significant correlation between soil water repellence and dissolved organic carbon content of the leachate, together with pedological evidence of organic staining of ped faces in the clay subsoil indicate that seasonal rainfall leached soluble water‐repellent compounds from the topsoil. The reestablishment of water repellence after saturation and leaching required the input of new water‐repellent compounds. These findings suggest that the use of surfactants before sowing may assist to leach water‐repellent compounds from the topsoil, allowing improved infiltration and reduced runoff through the remainder of the cropping season. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Managing land to produce food, fibre or timber must have some environmental impact, the magnitude of which will depend on the cropping system and the intensity of management. Nitrogen is an indispensable input for modern agricultural systems, which not only aim to feed people but seek to sustain rural communities dependent on agriculture. In temperate regions there is a universal problem of nitrate leaching from agricultural land, and increases in nitrate concentrations in water bodies in recent years have been a cause for concern, especially the role of nitrate in the development of algal blooms. Nitrate invariably appears in drainage from agricultural land in the absence of any significant input of nitrogen as a result of the breakdown of soil humus or from aerial deposition of combined nitrogen in various forms. Where only inorganic nitrogen fertilizers are applied in amounts and at times to satisfy crop demand, they are apparently used efficiently. Where nitrate in drainage is a direct residue from applied nitrogen fertilizers, it can usually be associated with the use of excessive quantities or with the failure of a crop to achieve its expected yield. Most of the nitrate which appears in soil in autumn comes from the microbial mineralization of soil organic matter. The soil microbial population breaking down organic matter does not differentiate between soil humus or organic matter added to soil by ploughing in grass leys, forage legumes or large quantities of organic manures. Adding such organic materials to soil can lead to the release of much nitrate. Such microbial processes would be impossible to control in environmentally benign ways.  相似文献   

16.
Pesticide residues in ground water of the San Joaquin Valley, California   总被引:1,自引:0,他引:1  
A regional assessment of non-point-source contamination of pesticide residues in ground water was made of the San Joaquin Valley, an intensively farmed and irrigated structural trough in central California. About 10% of the total pesticide use in the USA is in the San Joaquin Valley. Pesticides detected include atrazine, bromacil, 2.4-DP, diazinon, dibromochloropropane, 1,2-dibromoethane, dicamba, 1,2-dichloropropane, diuron, prometon, prometryn, propazine and simazine. All are soil applied except diazinon.

Pesticide leaching is dependent on use patterns, soil texture, total organic carbon in soil, pesticide half-life and depth to water table. Leaching is enhanced by flood-irrigation methods except where the pesticide is foliar applied such as diazinon. Soils in the western San Joaquin Valley are fine grained and are derived primarily from marine shales of the Coast Ranges. Although shallow ground water is present, the fewest number of pesticides were detected in this region. The fine-grained soil inhibits pesticide leaching because of either low vertical permeability or high surface area; both enhance adsorption on to solid phases. Soils of the valley floor tend to be fine grained and have low vertical permeability. Soils in the eastern part of the valley are coarse grained with low total organic carbon and are derived from Sierra Nevada granites. Most pesticide leaching is in these alluvial soils, particularly in areas where depth to ground water is less than 30m. The areas currently most susceptible to pesticide leaching are eastern Fresno and Tulare Counties.

Tritium in water molecules is an indicator of aquifer recharge with water of recent origin. Pesticide residues transported as dissolved species were not detected in non-tritiated water. Although pesticides were not detected in all samples containing high tritium, these samples are indicative of the presence of recharge water that interacted with agricultural soils.  相似文献   


17.
The overarching objective of this research was to provide an improved understanding of the role of land use and associated management practices on long‐term water‐driven soil erosion in small agricultural watersheds by coupling the established, physically based, distributed parameter Water Erosion Prediction Project (WEPP) model with long‐term hydrologic, land use and soil data. A key step towards achieving this objective was the development of a detailed methodology for model calibration using physical ranges of key governing parameters such as effective hydraulic conductivity, critical hydraulic shear stress and rill/inter‐rill erodibilities. The physical ranges for these governing parameters were obtained based on in situ observations within the South Amana Sub‐Watershed (SASW) (~26 km2) of the Clear Creek, IA watershed where detailed documentation of the different land uses was available for a period of nearly 100 years. A quasi validation of the calibrated model was conducted through long‐term field estimates of water and sediment discharge at the outlet of SASW and also by comparing the results with data reported in the literature for other Iowa watersheds exhibiting similar biogeochemical properties. Once WEPP was verified, ‘thought experiments’ were conducted to test our hypothesis that land use and associated management practices may be the major control of long‐term erosion in small agricultural watersheds such as SASW. Those experiments were performed using the dominant 2‐year crop rotations in the SASW, namely, fall till corn–no till bean (FTC‐NTB), no till bean–spring till corn (NTB‐STC) and no till corn–fall till bean (NTC‐FTB), which comprised approximately 90% of the total acreage in SASW. Results of this study showed that for all crop rotations, a strong correspondence existed between soil erosion rates and high‐magnitude precipitation events during the period of mid‐April and late July, as expected. The magnitude of this correspondence, however, was strongly affected by the crop rotation characteristics, such as canopy/residue cover provided by the crop, and the type and associated timing of tillage. Tillage type (i.e. primary and secondary tillages) affected the roughness of the soil surface and resulted in increases of the rill/inter‐rill erodibilities up to 35% and 300%, respectively. Particularly, the NTC‐FTB crop rotation, being the most intense land use in terms of tillage operations, caused the highest average annual erosion rate within the SASW, yielding quadrupled erosion rates comparatively to NTB‐STC. The impacts of tillage operation were further exacerbated by the timing of the operations in relation to precipitation events. Timing of operations affected the ‘life‐time’ of residue cover and as a result, the degree of protection that residue cover offers against the water action on the soil surface. In the case of NTC‐FTB crop rotation, dense corn residue stayed on the ground for only 40 days, whereas for the other two rotations, corn residue provided a protective layer for nearly 7 months, lessening thus the degree of soil erosion. The cumulative effects of tillage type and timing in conjunction with canopy/residue cover led to the conclusion that land management practices can significantly amplify or deamplify the impact of precipitation on long‐term soil erosion in small agricultural watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Ecotoxicity of three potentially toxic metals (PTM) (Cu, Zn, and Cr) in a slightly acidic sandy soil is tested using the soil respiration test (OECD‐217) in order to determine EC50 values for the carbon transformation activity of microorganisms. Addition of an organic amendment of Populus leaves is also crossed with metal spiking in order to investigate possible interaction with metal toxicity. Soil respiration is measured at day 1 and 28 after the soil spiking with the PTM to assess short‐term effects on soil microbial activity. Of the three metals tested, Cu shows the highest toxicity at the longest exposure times (day 28) and Zn shows a strong inhibitory effect in the short‐term (day 1), even though later toxicity diminish significantly. Cr is the least toxic studied PTM. Organic amendment outweighs any adverse effects of these metals, increasing soil respiration, even in the treatments with high doses of metals.  相似文献   

19.
Batch leaching methods have been used for several decades to estimate the potential release of contaminants from soils. Four batch leaching procedures (toxicity characteristic leaching procedure, synthetic precitation leaching procedure, deionized water leaching procedure, and California waste extraction test) were evaluated for their ability to realistically quantify the mobility of metals from previously contaminated glaciated soils. The study was conducted using soils from four different sites (three in Connecticut and one in Maine). The results of the batch leaching procedures were compared with a set of continuous column leaching experiments performed at two different flowrates and two influent pH values. The results suggested that the synthetic precipitation leaching procedure (SPLP) was more realistic than the toxicity characteristic leaching procedure (TCLP), but still a conservative leaching estimate for evaluating the potential for metal mobility in glaciated soils. This study suggests that using SPLP as a test for estimating metal cleanup levels will result in lower remediation costs relative to TCLP or waste extraction test (WET), but still maintain a high level of confidence in the protection of ground water quality.  相似文献   

20.
The rational use of pesticides generates an impact which is normally reversed and eliminated by the environment itself. However, the indiscriminate use of pesticides makes its natural degradation rhythm difficult, prolonging their presence in the soil for a great deal of time. Aiming towards a decrease in the environmental impact of pesticides, soil microorganisms capable of degrading pesticides, such as propanil, were investigated. An Enterobacter cloacae strain, isolated from rice field soil, was exposed to the herbicide propanil alone and in a mixture containing also bentazone, clomazone, quinclorac, and 2,4‐D. This bacterium was able to eliminate 100% of the applied propanil in 28 days. Propanil degradation in the 5‐herbicide mixture was much lower than that of individual pesticide degradation. The aeration of the system helped to degrade propanil and its subproduct 3,4‐dichloroaniline much faster. LC with UV detection was used to determine the remaining concentrations of the herbicides and their subproducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号