首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of a new type of reinforced concrete (RC) jacket for RC exterior beam–column connections damaged by seismic excitations is addressed and experimentally investigated. The proposed jacket has very small thickness and includes small diameter steel reinforcement. This jacketing applies at the joint region and at a small part of the columns and the beam. The main advantage of the proposed thin and locally applied jacket compared with the commonly used concrete jacket is the fact that its application is not restrained by space limitations, and since it slightly changes the initial size of the elements, the building's dynamics and seismic behaviour remain practically unaffected. For the needs of this study, 10 exterior beam–column joint subassemblages were constructed and subjected to increasing cyclic loading. Later, the damaged specimens were locally retrofitted using the proposed thin RC jackets and they were retested with the same load sequence. Three different specimen configurations with various amounts of shear reinforcement in the joint area were examined and two types of jackets (a) with light and (b) with dense reinforcement were applied. Test results indicated that the seismic performance of the retrofitted specimens was fully restored and in some cases substantially improved with respect to the performance of the same specimens in the initial loading, since they exhibited higher values of load capacity and hysteretic energy dissipation. Discussion for the conditions of the use of the examined jacketing technique either as a repair or as a strengthening method is also included. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The seismic response of non‐ductile reinforced concrete (RC) buildings can be affected by the behaviour of beam‐column joints involved in the failure mechanism, especially in typical existing buildings. Conventional modelling approaches consider only beam and column flexibility, although joints can provide a significant contribution also to the overall frame deformability. In this study, the attention is focused on exterior joints without transverse reinforcement, and a possible approach to their modelling in nonlinear seismic analysis of RC frames is proposed. First, experimental tests performed by the authors are briefly presented, and their results are discussed. Second, these tests, together with other tests with similar features from literature, are employed to calibrate the joint panel deformability contribution in order to reproduce numerically the experimental joint shear stress–strain behaviour under cyclic loading. After a validation phase of this proposal, a numerical investigation of the influence of joints on the seismic behaviour of a case study RC frame – designed for gravity loads only – is performed. The preliminary failure mode classification of the joints within the analysed frame is carried out. Structural models that (i) explicitly include nonlinear behaviour of beam‐column joints exhibiting shear or anchorage failure or (ii) model joints as elements with infinite strength and stiffness are built and their seismic performance are assessed and compared. A probabilistic assessment based on nonlinear dynamic simulations is performed by means of a scaling approach to evaluate the seismic response at different damage states accounting for uncertainties in ground‐motion records. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This experimental study investigates the effectiveness of crossed inclined bars (X‐bars) as joint shear reinforcement in exterior reinforced concrete beam–column connections under cyclic deformations. Test results of 20 joint subassemblages with various reinforcement ratios and arrangements including X‐bars in the joint area are presented. The X‐type, non‐conventional reinforcement is examined as the only joint reinforcement and in combination with common stirrups or vertical bars. The experimental results reported herein include full loading cycle curves, energy dissipation values and a categorization of the observed damage modes. Based on the comparisons between the overall hysteretic responses of the tested specimens, it is deduced that joints with X‐bars exhibited enhanced cyclic performance and improved damage mode since a distinct flexural hinge was developed in the beam–joint interface. Further, the combination of crossed inclined bars and stirrups in joint area resulted in enhanced hysteretic response and excellent performance capabilities of the specimens. However, in some specimens with X‐bars as the only joint shear reinforcement, the deformations of the bent anchorage of the beam's bars caused considerable damages at the back of the joint area. Discussion for a potential replacement of the joint stirrups with X‐type reinforcement in some cases of exterior joints is also included. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
An existing two‐dimensional macroelement for reinforced concrete beam–column joints is extended to a three‐dimensional macroelement. The three‐dimensional macroelement for beam–column joints consists of six rigid interface plates and uniaxial springs for concrete, steel, and bond–slip, which model the inside of a beam–column joint. The mechanical models for the materials and the stiffness equation for the springs are also presented. To validate the model, we used test results from three slab–beam–column sub‐assemblages subjected to bi‐lateral cyclic load. It is revealed that the new joint model is capable of capturing the strength of beam–column joints and the bidirectional interaction in joint shear response, including the concentration of damage in the beam–column joint, the pinching nature in hysteretic behavior, the stiffness degradation, and strength deterioration resulting from cyclic and bidirectional loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The scope of this study is to present results of an experimental investigation on the behaviour of critical external beam–column joints repaired or/and strengthened with a combination of epoxy resin injections and carbon‐fibre‐reinforced plastics (C‐FRP) sheets and to extract useful and practical conclusions. The experimental program comprises 12 external beam–column joint connection subassemblages tested in cyclic loading. From the observed responses of the examined specimens it can be deduced that the technique of epoxy resin injections is appropriate for the total rehabilitation of the joints seismic capacity, since no damages have been observed at the joint area of the specimens after the repair. The combination of this technique with the use of C‐FRP sheets leads to a significant improvement of the loading capacity, the energy absorption and the ductility and finally it leads to improved type of damages compared with the damage modes of the specimens during the initial loading. Shortcomings of the application of C‐FRP sheets for practical use are also pointed out. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Seismic performance of exterior beam–column subassemblages of reinforced concrete structure designed and detailed on the basis of the provisions of Eurocode and Indian Standards at different stages of their evolution is evaluated. Performance of the subassemblages designed and detailed according to the three different stages of codal evolution (gravity load design, ‘Nonductile’, and ‘Ductile’) is evaluated through analytical formulations and experimental investigations. In the ‘NonDuctile’ specimens, it has been observed that the shear distortion and degradation in stiffness and strength are significantly high. Performance of the ‘Ductile’ specimens based on Eurocode and Indian Standards is almost similar in terms of strength and stiffness degradation. Nevertheless, the specimen designed on the basis of Indian Standard shows higher energy dissipation at a given drift ratio. In the analytical study, shear and flexural failure of members of subassemblage and shear failure of the joint are considered as possible modes of failure of the beam–column subassemblage. For evaluating the shear strength of the joint region, a soften strut‐and‐tie model is used. Analytically obtained strengths based on the failure criteria of different components of the specimens have been first validated with experimental results and then used to determine the strength of the specimens. The investigation could indicate even the mode of failure at local level. It is utmost important to mention here that even the ductile specimens dissipate most of the energy through the development of damage in the joint region, which is neither desirable nor safe for the stability of whole structure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
为研究施工缝对框架结构抗震性能的影响,利用提出的施工缝模型,基于OPENSEES平台建模进行静力非线性分析和非线性动力时程分析。通过对比整浇框架与带缝框架的顶点最大位移、层间位移角、塑性铰出现和分布规律等明确施工缝对框架结构的抗震性能的影响程度。结果表明,施工缝使框架结构的变形和层间位移角显著增大,并且使8、9度区框架结构的层间位移角分布发生改变;施工缝使柱端更易出现塑性铰,更易发生"强梁弱柱"的破坏模式;在高烈度区,施工缝的影响比较显著,如果忽略其影响,将会高估框架结构的抗震性能。  相似文献   

8.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
混凝土框架节点碳纤维布抗震加固的试验与分析   总被引:1,自引:0,他引:1  
本文提出了用碳纤维布加固平面框架中间节点和空间框架中间节点的抗震加固新方法,通过5个框架中间节点(其中2个为拟三维节点)的足尺拟静力试验,以及用有限元软件ANSYS进行分析,验证了本文加固方法的有效性。试验与分析结果表明,对平面框架梁柱节点,本文的2种加固方法均能显著改善构件的延性,承载力也有一定的提高;对空间框架梁柱节点,采用碳纤维布与三角钢腋联合加固不但能够大大提高构件延性,而且能够提高节点的屈服强度、极限强度和屈服后刚度,加固效果十分明显。  相似文献   

10.
Reinforced concrete wide beam–column connections have been used in low‐to‐moderate seismicity regions despite little information being available on their seismic performance. This research was conducted to clarify experimentally the hysteretic behaviour and ultimate energy dissipation capacity (UEDC) of this type of existing connection under lateral dynamic earthquake loadings. For this purpose, ? scale models were constructed and tested on a shaking table until they collapsed. The exterior connection behaved as a strong column–weak beam mechanism, and the interior connection as a weak column–strong beam mechanism. The averaged UEDC of the connections in each domain of loading, normalized with respect to the product of the yield strength and yield displacement, were about 6 and 5 for the exterior and interior connections, respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic damages commonly observed on beam–column joints of old reinforced concrete structures, built with plain bars and without proper detailing, justifies the need to further study the behaviour of this type of structures. The response of these structures when loaded cyclically, as occurs during the earthquakes, is partially controlled by the bond properties between the reinforcing bars and the surrounding concrete. This paper presents the results of an experimental campaign of unidirectional cyclic tests carried out on six full‐scale beam–column joints built with plain bars. These joint specimens are representative of existing reinforced concrete structures, that is, built without adequate reinforcement detailing for seismic demands. For comparison, an additional specimen is built with deformed bars and tested. The seven specimens are designed and detailed to allow the investigation of the influence of bond properties, lapping of the longitudinal bars in columns and beams, bent‐up bars in the beams, slab contribution and concrete strength. The lateral force–drift relationships, global dissipated energy evolution, contribution of the joint, beams and columns to the global dissipated energy, ductility, equivalent damping, final damage observed, homogenized reinforced concrete damage index, displacement components, curvature evolutions and Eurocode requirements are presented and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A three‐dimensional beam–truss model (BTM) for reinforced concrete (RC) walls that explicitly models flexure–shear interaction and accurately captures diagonal shear failures was presented in the first part of this two‐paper series. This paper extends the BTM to simulate RC slabs and coupled RC walls through slabs and beams. The inclination angle of the diagonal elements for coupled RC walls is determined, accounting for the geometry of the walls and the level of coupling. Two case studies validate the model: (1) a two‐bay slab–column specimen experimentally tested using cyclic static loading and (2) a five‐story coupled T‐wall–beam–slab specimen subjected to biaxial shake table excitation. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally measured response and observed damage. The five‐story specimen is characterized by diagonal shear failure at the bottom story of the walls, which is captured by the BTM. The BTM of the five‐story specimen is used to study the effects of coupling on shear demand for lightly reinforced RC coupled walls. The effect of mesh refinement and bar fracture of non‐ductile transverse reinforcement is studied. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
异形柱框架节点抗震性能试验研究   总被引:6,自引:0,他引:6  
通过6个2/3比例的T形柱框架节点的低周反复试验,考察了轴压比、柱翼缘宽度等因素对节点裂缝开展、节点的破坏机理的影响。提出了翼缘宽度对节点抗剪性能的影响与梁柱抗弯刚度比有关,指出了翼缘板对节点抗剪承载力影响的修正系数ξf须考虑梁柱抗弯刚度比的影响,而不能仅按《混凝土异形柱结构技术规程》(征求意见稿)中的bf-bc来反映。  相似文献   

14.
Beam–column sub‐assemblages are the one of the most vulnerable structural elements to the seismic loading and may lead to devastating consequences. In order to improve the performance of the poorly/under‐designed building structures to the critical loading scenarios, introduction of steel bracing at the RC beam–column joint is found to be one of the modern and implementable techniques. In the present work, a diagonal metallic single haunch/bracing system is introduced at the beam–column joints to provide an alternate load path and to protect the joint zone from extensive damage because of brittle shear failure. In this paper, an investigation is reported on the evaluation of tae influence of different parameters, such as angle of inclination, location of bracing and axial stiffness of the single steel bracing on improving the performance through altering the force transfer mechanism. Numerical investigations on the performance of the beam–column sub‐assemblages have been carried out under cyclic loading using non‐linear finite element analysis. Experimentally validated numerical models (both GLD and upgraded specimen) have been further used for evaluating the performance of various upgrade schemes. Cyclic behaviour of reinforcement, concrete modelling based on fracture energy, bond‐slip relations between concrete and steel reinforcement have been incorporated. The study also includes the numerical investigation of crack and failure patterns, ultimate load carrying capacity, load displacement hysteresis, energy dissipation and ductility. The findings of the present study would be helpful to the engineers to develop suitable, feasible and efficient upgrade schemes for poorly designed structures under seismic loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Estimation of structural damage from a known increase in the fundamental period of a structure after an earthquake or prediction of degradation of stiffness and strength for a known damage requires reliable correlations between these response functionals. This study proposes a modified Clough–Johnston single‐degree‐of‐freedom oscillator to establish these correlations in the case of a simple elasto‐plastic oscillator. It is assumed that the proposed oscillator closely models the response of a given multi‐degree‐of‐freedom system in its fundamental mode throughout the duration of the excitation. The proposed model considers the yield displacement level and ductility supply ratio‐related parameter as two input parameters which must be estimated over a narrow range of ductility supply ratio from a frequency degradation curve. This curve is to be identified from a set of recorded excitation and response time‐histories. Useful correlations of strength and stiffness degradation with damage have been obtained wherein a simple damage index based on maximum and yield displacements and ductility supply ratio has been considered. As an application, the proposed model has been used to demonstrate that ignoring the effects of aftershocks in the case of impulsive ground motions may lead to unsafe designs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a design‐variable‐based inelastic hysteretic model for beam–column connections. It has been well known that the load‐carrying capacity of connections heavily depends on the types and design variables even in the same connection type. Although many hysteretic connection models have been proposed, most of them are dependent on the specific connection type with presumed failure mechanisms. The proposed model can be responsive to variations both in design choices and in loading conditions. The proposed model consists of two modules: physical‐principle‐based module and neural network (NN)‐based module in which information flow from design space to response space is formulated in one complete model. Moreover, owing to robust learning capability of a new NN‐based module, the model can also learn complex dynamic evolutions in response space under earthquake loading conditions, such as yielding, post‐buckling and tearing, etc. Performance of the proposed model has been demonstrated with synthetic and experimental data of two connection types: extended‐end‐plate and top‐ and seat‐angle with double‐web‐angle connection. Furthermore, the design‐variable‐based model can be customized to any structural component beyond the application to beam–column connections. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The effectiveness of a rehabilitation method based on joint enlargement using prestressed steel angles to enhance the seismic behavior of damaged external reinforced concrete beam‐column joints was experimentally investigated. Three half‐scale joints having either non‐seismic or seismic reinforcement details were tested both before and after rehabilitation by applying lateral cyclic loading of increasing amplitudes. Two defects were considered for the two non‐seismic units, being the absence of transverse steel hoops and insufficient bond capacity of beam bottom steel reinforcing bars in the joint panel zone. The damaged specimens were rehabilitated by injecting epoxy grout into existing cracks and installing stiffened steel angles at the re‐entrant corners of the beam‐column joint, both above and below the beam, that were mounted and held in place using prestressed high‐tensile strength bars. The test results indicated that the seismic performance of the rehabilitated specimens in terms of strength, stiffness, and ductility was fully recovered and comparable with the performance of the seismically detailed specimen. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
本文按现行规范及技术规程设计了设防烈度为8度的一个规则的钢筋混凝土异形柱框架,并进行了单向水平地震作用下的空间三维非线性地震反应分析,考查了异形柱框架结构在设防和罕遇地震水准下的整体抗震性能,对结构能否达到抗震设防目标进行了初步评价。结果表明,8度区按规范设计的结构在设防烈度及罕遇烈度地震作用下基本能够达到预期的抗震设防目标。  相似文献   

19.
In this paper, seismic analysis of plane RC frame structures with High Damping Rubber Bearings (HDRBs) base-isolation systems is performed in the non linear range. For RC members, a modified version of hysteretic Park model is used. For HDRB isolators, a new hysteretic model is presented, which is able to accurately predict the mechanical response in the large strain range. The dynamic equilibrium equations are solved making use, at each time step, of a block iterative Newton–Raphson scheme: the frame is divided into superelements (beams and columns) with master nodes at the extremities and internal local nodes for the computation of relations between end moments and relative rotations at superelement extremities. The effectiveness of HDRB base-isolation systems to reduce inelastic deformations in the RC superstructures is investigated through some numerical examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Performance‐based engineering (PBE) methodologies allow for the design of more reliable earthquake‐resistant structures. Nonetheless, to implement PBE techniques, accurate finite element models of critical components are needed. With these objectives in mind, initially, we describe an experimental study on the seismic behaviour of both beam‐to‐column (BTC) and column‐base (CB) joints made of high‐strength steel S590 circular columns filled with concrete. These joints belonged to moment‐resisting frames (MRFs) that constituted the lateral‐force‐resisting system of an office building. BTC joints were conceived as rigid and of partial strength, whereas CB joints were designed as rigid and of full strength. Tests on a BTC joint composed of an S275 steel composite beam and high‐strength steel concrete‐filled tubes were carried out. Moreover, two seismic CB joints were tested with stiffeners welded to the base plate and anchor bolts embedded in the concrete foundation as well as where part of a column was embedded in the foundation with no stiffeners. A test programme was carried out with the aim of characterising these joints under monotonic, cyclic and random loads. Experimental results are presented by means of both force–interstory drift ratio and moment–rotation relationships. The outcomes demonstrated the adequacy of these joints to be used for MRFs of medium ductility class located in zones of moderate seismic hazard. Then, a numerical calibration of the whole joint subassemblies was successfully accomplished. Finally, non‐linear time‐history analyses performed on 2D MRFs provided useful information on the seismic behaviour of relevant MRFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号