首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Highway bridges in highly seismic regions can sustain considerable residual displacements in their columns following large earthquakes. These residual displacements are an important measure of post‐earthquake functionality, and often determine whether or not a bridge remains usable following an earthquake. In this study, a self‐centering system is considered that makes use of unbonded, post‐tensioned steel tendons to provide a restoring force to bridge columns to mitigate the problem of residual displacements. To evaluate the proposed system, a code‐conforming, case‐study bridge structure is analyzed both with conventional reinforced concrete columns and with self‐centering, post‐tensioned columns using a formalized performance‐based earthquake engineering (PBEE) framework. The PBEE analysis allows for a quantitative comparison of the relative performance of the two systems in terms of engineering parameters such as peak drift ratio as well as more readily understood metrics such as expected repair costs and downtime. The self‐centering column system is found to undergo similar peak displacements to the conventional system, but sustains lower residual displacements under large earthquakes, resulting in similar expected repair costs but significantly lower expected downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
It has been well documented that following a major earthquake a substantial percentage of economic loss results from downtime of essential lifelines in and out of major urban centres. This has thus led to an improvement of both performance‐based seismic design philosophies and to the development of cost‐effective seismic structural systems capable of guaranteeing a high level of protection, low structural damage and reduced downtime after a design‐level seismic event. An example of such technology is the development of unbonded post‐tensioned techniques in combination with rocking–dissipating connections. In this contribution, further advances in the development of high‐performance seismic‐resistant bridge piers are achieved through the experimental validation of unbonded post‐tensioned bridge piers with external, fully replaceable, mild steel hysteretic dissipaters. The experimental response of three 1 : 3 scale unbonded, post‐tensioned cantilever bridge piers, subjected to quasi‐static and pseudo‐dynamic loading protocols, are presented and compared with an equivalently reinforced monolithic benchmark. Minimal physical damage is observed for the post‐tensioned systems, which exhibit very stable energy dissipation and re‐centring properties. Furthermore, the external dissipaters can be easily replaced if severely damaged under a major (higher than expected) earthquake event. Thus, negligible residual deformations, limited repair costs and downtime can be achieved for critical lifeline components. Satisfactory analytical–experimental comparisons are also presented as a further confirmation of the reliability of the design procedure and of the modelling techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
An innovative seismic resisting system consisting of a Pre cast W all with E nd C olumns (or PreWEC) has been developed, and its performance has been verified using large‐scale cyclic testing. The wall and end columns in the PreWEC system are anchored individually to a foundation using unbonded post‐tensioning. A newly designed, low‐cost mild steel connector is used to connect the wall and end columns horizontally along the vertical joint. The connectors are easily replaceable and provide additional hysteretic energy dissipation to the system. The PreWEC system can be economically designed to have a lateral load carrying capacity similar to that of a comparable reinforced concrete wall, while minimizing damage and providing self‐centering capability. In addition to confirming these benefits, the large‐scale test demonstrated that the PreWEC system: (i) would provide superior seismic performance compared to other currently available structural wall systems especially for the precast industry; and (ii) meets all the mandatory acceptance criteria established by the American Concrete Institute (ACI) for special unbonded post‐tensioned precast structural walls and building frame special reinforced concrete shear wall systems, as defined in the American Concrete Society of Civil Engineers (ASCE) 7‐05. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
针对铁路少筋混凝土重力式桥墩的延性不足和抗震耗能能力较差的问题,本文提出了一种兼顾改善桥墩延性与强度的抗震措施,即在墩身底部设置局部纵向无粘结钢筋,其余墩身部分的纵向钢筋保持不变.共设计了4个桥墩模型,通过拟静力试验研究了配筋率和粘结方式对少筋混凝土重力式桥墩抗震性能的影响.结果表明:无粘结模型桥墩的破坏形式为弯曲破坏...  相似文献   

5.
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.  相似文献   

6.
This study assesses the seismic performance of a hybrid coupled wall (HCW) system with replaceable steel coupling beams (RSCBs) at four intensities of ground motion shaking. The performance of the HCW system is benchmarked against the traditional reinforced concrete coupled wall (RCW). Nonlinear numerical models are developed in OpenSees for a representative wall elevation in a prototype 11‐story building designed per modern Chinese codes. Performance is assessed via nonlinear dynamic analysis. The results indicate that both systems can adequately meet code defined objectives in terms of global and component behavior. Behavior of the two systems is consistent under service level earthquakes, whereas under more extreme events, the HCW system illustrates enhanced performance over the RCW system resulting in peak interstory drifts up to 31% lower in the HCW than the RCW. Larger drifts in the RCW are because of reduced coupling action induced by stiffness degradation of RC coupling beams, whereas the stable hysteretic responses and overstrength of RSCBs benefit post‐yield behavior of the HCW. Under extreme events, the maximum beam rotations of the RSCBs are up to 42% smaller than those of the RC coupling beams. Moderate to severe damage is expected in the RC coupling beams, whereas the RSCBs sustain damage to the slab above the beam and possible web buckling of shear links. The assessment illustrates the benefits of the HCW with RSCBs over the RCW system, because of easy replacement of the shear links as opposed to costly and time‐consuming repairs of RC coupling beams. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
在大连国际会议中心核心筒墙体抗震设计中,采用了一种钢管混凝土叠合边框墙肢内藏钢板、连梁内藏钢桁架的组合双肢剪力墙。为研究其抗震性能,进行了1个1/7缩尺的这种新型组合双肢剪力墙模型的低周反复荷载试验,分析了其承载力、延性、刚度及其退化、滞回特性、耗能能力和破坏特征,重点研究了钢管混凝土叠合边框、墙肢内藏钢板、连梁内藏钢桁架之间的共同工作性能。研究表明:内藏钢板-钢桁架可显著提高钢管混凝土叠合边框双肢剪力墙的承载力和延性性能;钢管混凝土叠合边框可充分发挥其承载力高、不易开裂、延性好的优势。文中提出了该新型组合双肢剪力墙的承载力计算模型,计算结果与实测结果符合较好。  相似文献   

8.
A new type of hybrid coupled wall system, consisting of rolled steel coupling beams, reinforced concrete (RC) wall piers, and concrete‐filled tube (CFT) short columns, is introduced. In this new system, the bases of the wall piers are connected to the base beams only through CFT short columns, unlike conventional coupled walls. Yield occurs in the coupling beams and the short columns; hence, in the RC wall piers, only minimum cracking appears. A total of four subassembly specimens, designed to fail in various collapse mechanisms, were cyclically loaded under constant axial force. A benchmark specimen showed ductile behavior with large energy dissipation until fracture occurred in the coupling beam. In the specimen designed to fail in shear in its CFT, substantial axial shortening was observed, but the overall behavior was ductile. Behavior of specimens with small amounts of section steel in the wall panel fringe, or with thin wall panels, also showed ductile behavior, but the strength and energy dissipation were significantly smaller than other two specimens. An analytical model was proposed for a frame analysis program using fiber elements to simulate elastic–plastic behavior of the system. Design methods to prevent shear failure of CFT and RC panels are suggested using the analytical and test results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The biaxial response of two bridge piers is experimentally investigated. A post‐tensioned precast bridge pier with external replaceable mild‐steel dissipaters is tested under biaxial loading. The performance of the post‐tensioned bridge pier is compared with a conventionally reinforced monolithic bridge pier. The experimental biaxial response is then compared with previous uniaxial experimental testing of identical bridge piers to understand the influence of biaxial loading, specifically concerning post‐tensioned rocking sections. A 3‐dimensional moment–curvature and moment–rotation analysis program is created to generate the monotonic section response of a conventional and post‐tensioned bridge pier. After comparing the accuracy of the section analysis program to the experimental testing of the monolithic pier, the program is validated against the experimental testing of the post‐tensioned bridge pier. This section analysis program is then used in the calibration of a macro‐model to capture the entire cyclic response of the post‐tensioned bridge pier. The macro‐model adopts multiple linear‐elastic compression‐only springs at the rocking interface, combined with non‐linear inelastic springs for each of the mild‐steel dissipaters and returns encouraging results at both local and global levels. The paper concludes with a number of biaxial moment‐interaction design charts for monolithic and post‐tensioned bridge piers as a function of mechanical and geometric section properties. The design charts define the biaxial yield surface at nominal yield and at the design section capacity defined by one of three material limit states. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
为进一步研究梁端局部无粘结钢筋混凝土悬臂梁的抗弯承载力,在理论分析的基础上,使用ABAQUS有限元软件对局部无粘结梁与完好梁的承载力进行了仿真对比分析。结果表明,当局部无粘结梁与完好梁的配筋方式及材料力学性能一致、受拉纵筋锚固良好且可进入屈服阶段时,局部无粘结梁与完好梁的应变分布和应力历程有着明显的差异;局部无粘结梁的极限承载力高于完好梁;随着荷载的增加,无粘结梁的承载机理呈现出明显的“拱效应”。通过梁与拱的共同作用,建立了梁端局部无粘结钢筋混凝土梁抗弯承载力计算公式。  相似文献   

11.
以轴压比和钢连梁弯剪比为主要参数,设计并制作了3个1/4缩尺的钢板混凝土联肢剪力墙子结构,对试件施加恒定轴压力和水平往复加载.观察了各试件破坏特征,对比了顶层水平荷载-侧移曲线和骨架曲线以及延性系数和等效黏滞阻尼系数等抗震性能指标.结果表明:高轴压比会使整个试件的延性变差;弯剪比越大试件耗能能力越好,弯剪比越小试件刚度...  相似文献   

12.
New steel moment‐resisting connections that incorporate post‐tensioning elements to provide a self‐centering capacity and devices to dissipate seismic input energy have recently been proposed and experimentally validated. Experimental studies have confirmed that these connections are capable of undergoing large lateral deformations with negligible residual drifts. To facilitate their implementation, accurate modeling of the behavior of systems incorporating post‐tensioned connections must be readily available to designers and researchers. A number of simplified models have been suggested in the literature by researchers trying to capture experimental results at the beam–column connections and thereby to predict the global response of structures incorporating such connections. To provide a clear set of guidelines for the modeling of post‐tensioned steel frames, for practicing engineers as well as researchers, in this paper three types of numerical models of increasing complexity are presented: (i) a sectional analysis procedure, (ii) a lumped plasticity spring frame leveled approach and (iii) a non‐linear solid finite element analysis to predict the response at ultimate deformation levels. The analytical results obtained from the numerical models predict well the structural behavior of these connections when compared with available experimental data. Even at the ultimate deformation level, analytical results are in good agreement with test results. Furthermore, detailing requirements are proposed to assure that flexural hinges form in the beams in order to improve the cyclic response of steel self‐centering connections when drifts exceeding the design drifts are imposed to the system. Experimental and analytical studies demonstrate that steel post‐tensioned self‐centering connections incorporating the proposed detailing in the beams develop an increased deformation capacity and thereby exhibit a ductile response while avoiding a sudden loss of their strength and stiffness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The seismic behavior of steel bridge piers partially filled with concrete under actual earthquake conditions was investigated by using 20 square section specimens subjected to static cyclic loading tests and single‐directional and bidirectional hybrid loading tests. Acceleration records of two horizontal NS and EW directional components for hard (GT1), medium (GT2), and soft grounds (GT3), obtained during the 1995 Kobe earthquake, were adopted in dynamic tests. Experimental results clearly showed that maximum and residual displacements under actual earthquake conditions cannot be accurately estimated by conventional single‐directional loading tests, especially for GT2 and GT3. A modified admissible displacement was proposed on the basis of bidirectional loading test results. The concrete fill can effectively improve the seismic resistance performance if the concrete inside the steel bridge piers is sufficiently high in quantity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Centralized semi‐active control is a technique for controlling the whole structure using one main computer. Centralized control systems introduce better control for relatively short to medium high structures where the response of any story cannot be separated from the adjacent ones. In this paper, two centralized control approaches are proposed for controlling the seismic response of post‐tensioned (PT) steel frames. The first approach, the stiffness control approach, aims to alter the stiffness of the PT frame so that it avoids large dynamic amplifications due to earthquake excitations. The second approach, deformation regulation control approach, aims at redistributing the demand/strength ratio in order to provide a more uniform distribution of deformations over the height of the structure. The two control approaches were assessed through simulations of the earthquake response of semi‐actively and passively controlled six‐story post‐tensioned steel frames. The results showed that the stiffness control approach is efficient in reducing the frame deformations and internal forces. The deformation regulation control approach was found to be efficient in reducing the frame displacements and generating a more uniform distribution of the inter‐story drifts. These results indicate that centralized semi‐active control can be used to improve the seismic performance of post‐tensioned steel frames. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
型钢混凝土剪力墙是一种广泛应用于高层混合结构中的剪力墙形式。本文采用通用有限元程序ADINA,以边缘构件含钢率为主要参数,对不同剪跨比的几组剪力墙承载力和变形能力进行了分析,并与考虑了剪力墙混凝土等级、轴压比、配筋率和边缘约束指标等参数影响的剪力墙性能进行了比较研究。结果表明,在高层结构中采用较高强度的混凝土是有利的,但剪力墙的轴压比需要严格限制,且墙体配筋率并不是提高其抗震性能的有效手段。在高层混合结构剪力墙中,通过边缘构件设置型钢可有效增加墙体延性,且边缘约束构件的约束指标可取0.32左右。  相似文献   

16.
Post‐tensioned technologies for concrete seismic resistant buildings were first developed in the 1990s during the PREcast Seismic Structural Systems program. Among different solutions, the hybrid system proved to be the most resilient solution providing a combination of re‐centering and energy dissipative contributions respectively by using post‐tensioned tendons and mild steel reinforcement. The system, while providing significant strength and energy dissipation, reduces structural element damage and limits post‐earthquake residual displacements. More recently, the technology was extended to laminated veneer lumber (LVL) structural members, and extensive experimental and numerical work was carried out and allowed the development of reliable analytical and numerical models as well as design guidelines. On the basis of the experimental and numerical outcomes, this paper presents the evaluation of the seismic performance factors for post‐tensioned rocking LVL walls using the FEMA P‐695 procedure. Several archetype buildings were designed considering different parameters such as the building and story height, the type of seismic resistant system, the magnitude of gravity loads and the seismic design category. Lumped plasticity models were developed for each index archetype to simulate the behavioral aspects and collapse mechanisms. Non‐linear quasi‐static analyses were carried out to evaluate the system over‐strength factor; moreover, non‐linear time history analyses were performed using the incremental dynamic analysis concept to assess the collapse of each building. From the results of quasi‐static and dynamic analyses the response modification factor, R, system over‐strength factor, Ω0, and deflection amplification factor, Cd, values of, respectively, 7, 3.5 and 7.5 are recommended. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
As high‐rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind‐induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load‐resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind‐induced and earthquake‐induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full‐scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper aims to shed some further light on the seismic behaviour and design of reinforced concrete (R/C) walls which form part of dual (frame + wall) structures. The significance of post‐elastic dynamic effects is recognized by most seismic codes in the definition of the design action effects on walls, i.e. bending moments and shear forces. However, the resulting envelopes are not always fully satisfactory, particularly in the case of medium‐to‐high‐rise buildings. The relevant provisions of modern seismic codes are first summarized and their limitations discussed. Then an extensive parametric study is presented which involves typical multi‐storey dual systems that include walls with unequal lengths, designed according to the provisions of Eurocode 8 for two different ductility classes (M and H) and two effective peak ground acceleration levels (0.16 and 0.24g). The walls of these structures are also designed according to other methods, such as those used in New Zealand and Greece. The resulting different designs are then assessed by subjecting the structures to a suite of records from strong ground motions, carrying out inelastic time history analysis, and comparing the results with the design action effects. It is found that for (at least) the design earthquake intensity, the first two modes of vibration suffice for describing the seismic response of the walls. The bending moment envelope, as well as the base shear of each wall, is found to be strongly dependent on the second mode effect. As far as the code‐prescribed design action effects are concerned, only the NZ Code was found to be consistently conservative, whereas this was not always the case with EC8. A new method is then proposed which focuses on quantifying in a simple way the second mode effects in the inelastic response of the walls. This procedure seems to work better than the others evaluated herein. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
联肢钢板剪力墙能通过连梁耗能实现多重抗侧体系,其优良的抗震性能被越来越多的学者研究论证。本文基于能量平衡原理和Chao和Goel提出的弹塑性层剪力分布模式,预设目标侧移及屈服机制等性能参数,归纳出完整的联肢钢板剪力墙结构塑性设计流程,并采用该方法基于8度(0.3g)抗震设防条件下设计了12个联肢钢板剪力墙结构算例。利用有限元分析软件ABAQUS对结构进行了Push-over分析,研究了刚度退化、构件屈服顺序和结构整体变形等方面的结果。结果表明:设计算例能够实现多重抗震机制,并满足预期性能目标。  相似文献   

20.
Damage to buildings observed in recent earthquakes suggests that many old reinforced concrete structures may be vulnerable to the effects of severe earthquakes. One suitable seismic retrofit solution is the installation of steel braces to increase the strength and ductility of a building. Steel bracings have some compelling advantages such as their comparatively low weight, their suitability for prefabrication, and the possibility of openings for utilities, access, and light. The braces are typically connected to steel frames that are fixed to the concrete structure using post‐installed concrete anchors along the perimeter. However, these framed steel braces are not without some disadvantages such as heavier steel usage and greater difficulties during the installation. Therefore, braces without steel frames appear to be an attractive alternative. In this study, braces were connected to gussets furnished with anchor brackets, which were fixed by means of a few post‐installed concrete anchors. The clear structural system and the increased utilization of the anchors allowed the anchorage to be designed precisely and economically. The use of buckling‐restrained braces (BRBs) provides additional benefits in comparison with conventional braces. BRBs improve the energy dissipation efficiency and allow the limitation of the brace force to be taken up by the highly stressed anchorage. Cyclic loading tests were conducted to investigate the seismic performance of BRBs connected with post‐installed anchors used to retrofit reinforced concrete frames. The tests showed that the proposed design method is feasible and increases strength as well as ductility to an adequate seismic performance level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号