首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensive seismic exploration in the Northwest Territories began in the late 1960s. Since that time, the legacy of seismic surveys – i.e. straight lines cutting through boreal forest and tundra – has remained visible throughout northern Canada and Alaska. The removal of trees and compaction of the ground surface alter the thermophysical properties of the active (i.e. seasonally thawed) layer to such an extent that the underlying permafrost seriously degrades or even disappears completely. Such a transformation along linear corridors that cut indiscriminately across different terrain types with contrasting hydrological functions has potentially serious implications to the redistribution of water and energy within and among landscape units with feedbacks to permafrost thaw, land cover change and run‐off generation. This paper characterizes the flow and storage of water and energy along a seismic cut line in the high boreal zone of discontinuous permafrost in order to improve the understanding of these processes, their interactions and hydrological implications. As such, this paper lays a conceptual foundation for the development of numerical models needed to predict the hydrological and thermal impact of seismic lines in this sensitive region. We used ground‐penetrating radar and multi‐year ground temperatures and water levels along a seismic line to estimate the degree of permafrost degradation below it. The seismic line studied extends from a permafrost‐free wetland (flat bog), over a permafrost body (peat plateau) and into another permafrost‐free wetland (channel fen). It was found that once thaw had lowered the permafrost table below the ground surface elevation of the flat bog and channel fen, the seismic line forms a hydrological connection between them. It was also shown that during the permafrost thaw process, seismic lines develop a perennially thawed layer (talik) between the overlying active layer and underlying permafrost and that the talik conveys water as a conduit throughout the year. The implications of such drainage through seismic lines and networks on basin drainage in peatland‐dominated regions with discontinuous permafrost are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Terrestrial and aquatic ecological productivity are often nutrient limited in subarctic permafrost environments. High latitude regions are experiencing significant climatic change, including rapid warming and changing precipitation patterns, which may result in changes in nutrient dynamics within terrestrial and aquatic systems and hydrochemical transport between them. The objective of this research was to characterize changes in runoff quantity and quality within, and between peatlands and ponds throughout the snow‐free summer season. Two ponds and their catchments were monitored over the snow‐free season to measure changes in hydrologic storage, and to determine how water chemistry changed with the evolution of the frost table depth. Thresholds in hydrologic storage combined with frost table position (which inhibited infiltration and storage) produced nonlinear responses for runoff generation through highly conductive shallow peat layers while deeper, less conductive layers retarded flow. Greater inputs were required to exceed hydrologic storage (fill and spill) as a deepening frost table increased the hydrologically active portion of the soil, leading to seasonal variability in runoff pathways between peatlands and ponds. Runoff contributions to ponds were an integral component of the snow‐free water balance during the study period, contributing up to 60% of all snow‐free inputs. Groundwater chemistry (and pond chemistry following runoff events when ponds were connected with peatlands) reflected the different depths of peat and mineral soil accessed throughout the season. This work has improved scientific understanding of the combined controls of hydrologic inputs and ground frost on runoff and nutrient transport between peatlands and ponds, and sheds insight into how nutrient dynamics in cold regions may evolve under a changing climate.  相似文献   

3.
Tundra snow cover is important to monitor as it influences local, regional, and global‐scale surface water balance, energy fluxes, as well as ecosystem and permafrost dynamics. Observations are already showing a decrease in spring snow cover duration at high latitudes, but the impact of changing winter season temperature and precipitation on variables such as snow water equivalent (SWE) is less clear. A multi‐year project was initiated in 2004 with the objective to quantify tundra snow cover properties over multiple years at a scale appropriate for comparison with satellite passive microwave remote sensing data and regional climate and hydrological models. Data collected over seven late winter field campaigns (2004 to 2010) show the patterns of snow depth and SWE are strongly influenced by terrain characteristics. Despite the spatial heterogeneity of snow cover, several inter‐annual consistencies were identified. A regional average density of 0.293 g/cm3 was derived and shown to have little difference with individual site densities when deriving SWE from snow depth measurements. The inter‐annual patterns of SWE show that despite variability in meteorological forcing, there were many consistent ratios between the SWE on flat tundra and the SWE on lakes, plateaus, and slopes. A summary of representative inter‐annual snow stratigraphy from different terrain categories is also presented. © 2013 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
S. Pohl  P. Marsh 《水文研究》2006,20(8):1773-1792
Arctic spring landscapes are usually characterized by a mosaic of coexisting snow‐covered and bare ground patches. This phenomenon has major implications for hydrological processes, including meltwater production and runoff. Furthermore, as indicated by aircraft observations, it affects land‐surface–atmosphere exchanges, leading to a high degree of variability in surface energy terms during melt. The heterogeneity and related differences when certain parts of the landscape become snow free also affects the length of the growing season and the carbon cycle. Small‐scale variability in arctic snowmelt is addressed here by combining a spatially distributed end‐of‐winter snow cover with simulations of variable snowmelt energy balance factors for the small arctic catchment of Trail Valley Creek (63 km2). Throughout the winter, snow in arctic tundra basins is redistributed by frequent blowing snow events. Areas of above‐ or below‐average end‐of‐winter snow water equivalents were determined from land‐cover classifications, topography, land‐cover‐based snow surveys, and distributed surface wind‐field simulations. Topographic influences on major snowmelt energy balance factors (solar radiation and turbulent fluxes of sensible and latent heat) were modelled on a small‐scale (40 m) basis. A spatially variable complete snowmelt energy balance was subsequently computed and applied to the distributed snow cover, allowing the simulation of the progress of melt throughout the basin. The emerging patterns compared very well visually to snow cover observations from satellite images and aerial photographs. Results show the relative importance of variable end‐of‐winter snow cover, spatially distributed melt energy fluxes, and local advection processes for the development of a patchy snow cover. This illustrates that the consideration of these processes is crucial for an accurate determination of snow‐covered areas, as well as the location, timing, and amount of meltwater release from arctic catchments, and should, therefore, be included in hydrological models. Furthermore, the study shows the need for a subgrid parameterization of these factors in the land surface schemes of larger scale climate models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In Mediterranean regions, hillslopes are generally considered to be a mosaic of sink and source areas that control runoff generation and water erosion processes. These hillslopes used to be characterized by a complex hydrological and erosive response combining Hortonian and saturation excess overland flows. The hydrological response of soils is highly dependent on the soil surface components (e.g. vegetation patches, bare soil, rock fragment cover, crusts), which each one of them is dominated by a certain hydrological process. One of these soil surface components, not widely considered in studies of soil hydrology under Mediterranean conditions, is the accumulation of litter beneath shrubs enhancing water repellency in soils. This study investigates the influence of soil surface components, especially the litter accumulated beneath Cistus spp., in the hydrological and erosive responses of soils on two Mediterranean hillslopes having different exposures. The study was performed by means of rainfall simulation experiments and the Water Drop Penetration Time for measuring water repellency of soils, both techniques being carried out at the end of summer (September 2010) with very dry soils. The results indicate that (i) soil surface components from the north facing hillslope are characterized by a more uniform hydrological and erosive response than those from the south‐facing ones; (ii) the water repellency is more influential on the hydrological response of the north‐facing hillslope due to a greater accumulation of organic rest on the soils as the vegetation cover is also higher; (iii) the south‐facing hillslope seemed to follow the fertility island theory with very degraded bare soil areas, which are the most generated areas of runoff and mobilized sediments; (iv) the experimental area can be considered as a threshold area between the semiarid and subhumid Mediterranean environments, with the south‐facing hillslope being comparable with the former and the north facing one with the latter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The fill–spill of surface depressions (wetlands) results in intermittent surface water connectivity between wetlands in the prairie wetland region of North America. Dynamic connectivity between wetlands results in dynamic contributing areas for runoff. However, the effect of fill–spill and the resultant variable or dynamic basin contributing area has largely been disregarded in the hydrological community. Long‐term field observations recorded at the St. Denis National Wildlife Area, Saskatchewan, allow fill–spill in the basin to be identified and quantified. Along with historical water‐level observations dating back to 1968, recent data collected for the basin include snow surveys, surface water survey and production of a light detection and ranging–derived digital elevation model. Data collection for the basin includes both wet and dry antecedent basin conditions during spring runoff events. A surface water survey at St. Denis in 2006 reveals a disconnected channel network during the spring freshet runoff event. Rather than 100% of the basin contributing runoff to the outlet, which most hydrological models assume, only approximately 39% of the basin contributes to the outlet. Anthropogenic features, such as culverts and roads, were found to influence the extent and spatial distribution of contributing areas in the basin. Historical pond depth records illustrate the effect of antecedent basin conditions on fill–spill and basin contributing area. A large pond at the outlet of the St. Denis basin, which only receives local runoff during dry years when upstream surface storage has not been satisfied, has pond runoff volumes that increase by a factor of 20 or more during wet years when upstream antecedent basin surface storage is satisfied and basin‐wide runoff contributes to the pond. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Water and cation budgets were calculated for two sub-basins within a small low relief watershed in South-Central Ontario during a period of ephemeral runoff which was initiated by spring snow melt. The hydrology of one (upland) sub-basin was strongly influenced by seasonal fluctuations in the level of regional ground water. Saturated contributing areas formed in low lying regions adjacent to the stream channel where the water table rose to the surface, and stream discharge was a mixture of ground water and saturation overland flow. In the second sub-basin a wetland provided a large and spatially less variable saturated contributing area. Clay soils underlying the wetland resulted in a shallow perched water table, poorly drained and highly organic soils, and greatly reduced inputs of regional ground water. Stream discharge was largely the result of surface runoff from the wetland and adjacent areas of saturated soil.Inter-basin variations in water export were by far greater than variations in stream chemistry. As a result, inter-basin variations in cation export strongly reflected variations in water export over the time interval in which the majority of a given ion was lost from the watershed. Spatial differences in water export were least at the onset of runoff when basin saturation was greatest and overland flow made large contributions to the discharge from both sub-basins. Potassium and hydrogen had high concentrations at this time which caused these ions to show only small spatial differences in export. With decreases in the areal extent of soil saturation, and increases in the storage capacity of the wetland, the hydrologic contrast between sub-basins increased. Greater water loss from the upland area resulted from a greater discharge of regional ground water, and a more rapid expansion of the saturated contributing areas during storm events. Calcium, magnesium, and sodium concentrations increased steadily during the first 3 weeks of runoff, so that the peak export of these cations occurred later in the runoff period at times of higher concentration, but lower and spatially more variable discharges. Consequently, spatial differences in the loss of these ions was great and favoured the upland sub-basin, since the majority of export occurred when the hydrologic contrast between sub-basins was largest.  相似文献   

9.
Preferential subsurface flow paths known as water tracks are often the principal hydrological pathways of headwater catchments in permafrost areas, exerting an influence on slope physical and biogeochemical processes. In polar deserts, where water resources depend on snow redistribution, water tracks are mostly found in hydrologically active areas downslope from snowdrifts. Here, we measured the flow through seeping water track networks and at the front of a perennial snowdrift, at Ward Hunt Island in the Canadian High Arctic. We also used stable isotope analysis to determine the origin of this water, which ultimately discharges into Ward Hunt Lake. These measurements of water track hydrology indicated a glacio‐nival run‐off regime, with flow production mechanisms that included saturation overland flow (return flow) in a low sloping area, throughflow or pipe‐like flow in most seepage locations, and infiltration excess overland flow at the front of the snowdrift. Each mechanism delivered varying proportions of snowmelt and ground water, and isotopic compositions evolved during the melting season. Unaltered snowmelt water contributed to >90% of total flow from water track networks early in the season, and these values fell to <5% towards the end of the melting season. In contrast, infiltration excess overland flow from snowdrift consisted of a steady percentage of snowmelt water in July (mean of 69%) and August (71%). The water seeping at locations where no snow was left in August 2015 was isotopically enriched, indicating a contribution of the upper, ice‐rich layer of permafrost to late summer discharge during warmer years. Air temperature was the main driver of snowmelt, but the effect of slope aspect on solar radiation best explained the diurnal discharge variation at all sites. The water tracks in this polar desert are part of a patterned ground network, which increases connectivity between the principal water sources (snowdrifts) and the bottom of the slope. This would reduce soil–water interactions and solute release, thereby favouring the low nutrient status of the lake.  相似文献   

10.
River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre‐alpine basin of the River Thur (area 1703 km2). The basin is located in the north‐east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree‐line and a great part of the basin is snow covered during the winter season. In the distributed hydrological model, the 12 sub‐basins of the Thur catchment were spatially subdivided into sub‐areas (hydrologically similar response units—HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the evaporative demand of the local vegetation. The higher altitudinal dependency and variability of runoff results from the strong increase in precipitation and the decrease in evaporation with increased altitude. An increasing influence of snow cover on runoff as well as evapotranspiration with altitude is obvious. The computed actual evapotranspiration and runoff were evaluated against the observed values of a weighting lysimeter and against runoff hydrographs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
P. MARSH  J. W. POMEROY 《水文研究》1996,10(10):1383-1400
Models of surface energy balance and snow metamorphism are utilized to predict the energy and meltwater fluxes at an Arctic site in the forest–tundra transition zone of north-western Canada. The surface energy balance during the melt period is modelled using an hourly bulk aerodynamic approach. Once a snowcover becomes patchy, advection from the bare patches to the snow-covered areas results in a large spatial variation in basin snowmelt. In order to illustrate the importance of small-scale, horizontal advection, a simple parameterization scheme using sensible heat fluxes from snow free areas was tested. This scheme estimates the maximum horizontal advection of sensible heat from the bare patches to the snow-covered areas. Calculated melt was routed through the measured snowcover in each landscape type using a variable flow path, meltwater percolation model. This allowed the determination of the spatial variability in the timing and magnitude of meltwater release for runoff. Model results indicate that the initial release of meltwater first occurred on the shallow upland tundra sites, but meltwater release did not occur until nearly two weeks later on the deep drift snowcovers. During these early periods of melt, not all meltwater is available for runoff. Instead, there is a period when some snowpacks are only partially contributing to runoff, and the spatial variation of runoff contribution corresponds to landscape type. Comparisons of melt with and without advection suggests that advection is an important process controlling the timing of basin snowmelt.  相似文献   

12.
Many upland catchments in the UK have undergone afforestation; their characteristic waterlogged soils require extensive pre‐plantation ground drainage to allow tree establishment. In peatland areas this can result in very highly coloured runoff and enhanced dissolved organic matter (DOM) export in rivers of naturally high concentrations. In 1966, the Coalburn Experimental Catchment, northern England, was established to investigate the impact of afforestation on an upland peat catchment. Here we report the variations in DOM spectrophotometric properties of streamflow in the catchment at canopy closure, especially with respect to potential carbon sources within the artificial drainage ditches. Drainage ditches are characterized by water that has higher absorption coefficients and which is more highly coloured than in the catchment tributaries. Ditched, afforested areas produce more highly‐coloured runoff waters that are more fluorescent and absorbent normalized to carbon concentration compared to ditches in open moorland. Ditches that had been experimentally re‐excavated have organic matter of different spectrophotometric character, with higher dissolved organic carbon concentration and less aromatic or lower molecular weight material. It is hypothesized that this is due to the exposure of bare peat faces within and adjacent to the ditches that are more susceptible to drying compared to vegetated areas. The large extent of this drainage network acts as both a rapid transport network increasing hydrological connectivity and a pool for the storage of DOM, which is of different spectrophotometric character under low flow conditions, depending on management conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The June 2013 flood in the Canadian Rockies featured rain‐on‐snow (ROS) runoff generation at alpine elevations that contributed to the high streamflows observed during the event. Such a mid‐summer ROS event has not been diagnosed in detail, and a diagnosis may help to understand future high discharge‐producing hydrometeorological events in mountainous cold regions. The alpine hydrology of the flood was simulated using a physically based model created with the modular cold regions hydrological modelling platform. The event was distinctive in that, although at first, relatively warm rain fell onto existing snowdrifts inducing ROS melt; the rainfall turned to snowfall as the air mass cooled and so increased snowcover and snowpacks in alpine regions, which then melted rapidly from ground heat fluxes in the latter part of the event. Melt rates of existing snowpacks were substantially lower during the ROS than during the relatively sunny periods preceding and following the event as a result of low wind speeds, cloud cover and cool temperatures. However, at the basin scale, melt volumes increased during the event as a result of increased snowcover from the fresh snowfall and consequent large ground heat contributions to melt energy, causing snowmelt to enhance rainfall–runoff by one fifth. Flow pathways also shifted during the event from relatively slow sub‐surface flow prior to the flood to an even contribution from sub‐surface and fast overland flow during and immediately after the event. This early summer, high precipitation ROS event was distinctive for the impact of decreased solar irradiance in suppressing melt rates, the contribution of ground heat flux to basin scale snowmelt after precipitation turned to snowfall, the transition from slow sub‐surface to fast overland flow runoff as the sub‐surface storage saturated and streamflow volumes that exceeded precipitation. These distinctions show that summer, mountain ROS events should be considered quite distinct from winter ROS and can be important contributors to catastrophic events. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Integrating stable isotope tracers into rainfall‐runoff models allows investigation of water partitioning and direct estimation of travel times and water ages. Tracer data have valuable information content that can be used to constrain models and, in integration with hydrometric observations, test the conceptualization of catchment processes in model structure and parameterization. There is great potential in using tracer‐aided modelling in snow‐influenced catchments to improve understanding of these catchments' dynamics and sensitivity to environmental change. We used the spatially distributed tracer‐aided rainfall‐runoff (STARR) model to simulate the interactions between water storage, flux, and isotope dynamics in a snow‐influenced, long‐term monitored catchment in Ontario, Canada. Multiple realizations of the model were achieved using a combination of single and multiple objectives as calibration targets. Although good simulations of hydrometric targets such as discharge and snow water equivalent could be achieved by local calibration alone, adequate capture of the stream isotope dynamics was predicated on the inclusion of isotope data in the calibration. Parameter sensitivity was highest, and most local, for single calibration targets. With multiple calibration targets, key sensitive parameters were still identifiable in snow and runoff generation routines. Water ages derived from flux tracking subroutines in the model indicated a catchment where runoff is dominated by younger waters, particularly during spring snowmelt. However, resulting water ages were most sensitive to the partitioning of runoff sources from soil and groundwater sources, which was most realistically achieved when isotopes were included in the calibration. Given the paucity of studies where hydrological models explicitly incorporate tracers in snow‐influenced regions, this study using STARR is an important contribution to satisfactorily simulating snowpack dynamics and runoff generation processes, while simultaneously capturing stable isotope variability in snow‐influenced catchments.  相似文献   

16.
G. Desir 《水文研究》2002,16(13):2685-2700
A 9‐year rainfall, sediment yield and runoff generation record from four experimental plots has been studied. Plots are located in the central Ebro Basin over smooth hillslope developed over gypsum and marl Miocene deposits. The hydrological response of these areas is a function of soil properties, final infiltration capacity and permeability of soils and rainfall characteristics, such as intensity and amount. Results show that there are two types of hydrological response in these areas. First is Hortonian like, which takes place during wet periods and it is responsible for the main part of total sediment yield. Second is like saturation excess overland flow, and it appears after long period. The presence of either type is controlled by a double threshold, starting from when runoff is significant. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A deeper knowledge of the hydrological response of semi-arid Mediterranean watersheds would be useful in the prediction of runoff production for assessing flood risks and planning flood mitigation works. This study was conducted to identify the runoff generation mechanisms and their controlling factors at the hillslope scale in a Mediterranean semi-arid watershed. Four zero-order microcatchments were selected to measure rainfall and runoff for a three-year period. Two groups of soil were differentiated with respect to the hydrological response. The fine textured, poorly permeable soils of low organic carbon content had a greater runoff coefficient (9%) and lower runoff threshold (3·6 mm) than more permeable, coarser textured soils of medium organic carbon content (<3%, and 8 mm, respectively). The influence of rainfall characteristics on the hydrological response was different. Rain intensity was the major rainfall parameter controlling the runoff response in the microcatchments on fine textured, low infiltrability soils with a poor plant cover, while total rainfall was more closely correlated with runoff in coarser textured, highly permeable soils with a denser plant cover. It can be concluded that there are two runoff generation mechanisms: (i) an infiltration-excess overland flow in the more degraded areas with low organic carbon content (<0·5%) and low infiltrability (>5 mm h−1); and (ii) a saturation-excess overland flow in the less degraded areas with a high organic carbon content (>2%), high infiltrability (>8 mm h−1) and covered by a dense plant cover (>50%). © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
In the western USA, shifts from snow to rain precipitation regimes and increases in western juniper cover in shrub‐dominated landscapes can alter surface water input via changes in snowmelt and throughfall. To better understand how shifts in both precipitation and semi‐arid vegetation cover alter above‐ground hydrological processes, we assessed how rain interception differs between snow and rain surface water input; how western juniper alters snowpack dynamics; and how these above‐ground processes differ across western juniper, mountain big sagebrush and low sagebrush plant communities. We collected continuous surface water input with four large lysimeters, interspace and below‐canopy snow depth data and conducted periodic snow surveys for two consecutive water years (2013 and 2014). The ratio of interspace to below‐canopy surface water input was greater for snow relative to rain events, averaging 79.4% and 54.8%, respectively. The greater surface water input ratio for snow is in part due to increased deposition of redistributed snow under the canopy. We simulated above‐ground energy and water fluxes in western juniper, low sagebrush and mountain big sagebrush for two 8‐year periods under current and projected mid‐21st century warmer temperatures with the Simultaneous Heat and Water (SHAW) model. Juniper compared with low and mountain sagebrush reduced surface water input by an average of 138 mm or 24% of the total site water budget. Conversely, warming temperatures reduced surface water input by only an average of 14 mm across the three vegetation types. The future (warmer) simulations resulted in earlier snow disappearance and surface water input by 51 and 45 days, respectively, across juniper, low sagebrush and mountain sagebrush. Information from this study can help land managers in the sagebrush steppe understand how both shifts in climate and semi‐arid vegetation will alter fundamental hydrological processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Long‐term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils and more soil frost, as warming leads to a reduction in snow cover insulating soils during winter. Hubbard Brook has one of the longest records of direct field measurements of soil frost in the United States. Historical records show no long‐term trends in maximum annual frost depth, which is possibly confounded by high interannual variability and infrequency of major soil frost events. As a complement to field measurements, soil frost can be modelled reliably using knowledge of the physics of energy and water transfer. We simulated soil freezing and thawing to the year 2100 using a soil energy and water balance model driven by statistically downscaled climate change projections from three atmosphere‐ocean general circulation models under two emission scenarios. Results indicated no major changes in maximum annual frost depth and only a slight increase in number of freeze–thaw events. The most important change suggested by the model is a decline in the number of days with soil frost, stemming from a concurrent decline in the number of snow‐covered days. This shortening of the frost‐covered period has important implications for forest ecosystem processes such as tree phenology and growth, hydrological flowpaths during winter, and biogeochemical processes in soil. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

20.
Himalayan basins have considerable snow‐ and glacier‐covered areas, which are an important source of water, particularly during summer season. In the Himalayan region, in general, the glacier melt season is considered to be from May to October. Changes in hydrological characteristics of the runoff over the melt season can be understood by studying the variation in time to peak and time lag between melt generation and its emergence as runoff. In the present study, the runoff‐delaying characteristics of Gangotri Glacier, one of the largest glaciers in the Indian Himalayas, have been studied. For this purpose, hourly discharge and temperature data were collected near the snout of the glacier (4000 m) for three ablation seasons (2004–2006). The diurnal variations in discharge and temperature provided useful information on water storage and runoff characteristics of the glacier. In the early stages of the ablation period, poor drainage network and stronger storage characteristics of the glaciers due to the presence of seasonal snow cover resulted in a much delayed response of melt water, providing a higher time lag and time to peak as compared to the peak melt season. A comparison of runoff‐delaying parameters with the discharge ratio clearly indicated that changes in time lag and time to peak are inversely correlated with variations in discharge. Impact of such meltwater storage and delaying characteristics of glaciers on hydropower projects being planned/developed on glacier‐fed streams in India has been discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号