首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Recent advances in the simulation of free surface flows over mobile bed have shown that accurate and stable results in realistic problems can be provided if an appropriate coupling between the shallow water equations (SWE) and the Exner equation is performed. This coupling can be done if using a suitable Jacobian matrix. As a result, faithful numerical predictions are available for a wide range of flow conditions and empirical bed load discharge formulations, allowing to investigate the best option in each case study, which is mandatory in these type of environmental problems. When coupling the equations, the SWE are considered but including an extra conservation law for the sediment dynamics. In this way the computational cost may become unrealistic in situations where the application of the SWE over rigid bed can be used involving large time and space scales without giving up to the adequate level of mesh refinement. Therefore, for restoring the numerical efficiency, the coupling technique is simplified, not decreasing the number of waves involved in the Riemann problem but simplifying their definitions. The effects of the approximations made are tested against experimental data which include transient problems over erodible bed. The simplified model is formulated under a general framework able to insert any desirable discharge solid load formula.  相似文献   

3.
Sediment data were analyzed to determine grain‐size dependant factors affecting sediment transport in a low‐ordered, ephemeral watershed. Sediment and flow samples were collected during 22 flow events at the outlet of a 4·53 ha sub‐watershed within the Walnut Gulch Experimental Watershed in south‐eastern Arizona. Measured concentrations ranged from 4191 to 115 045 mg l?1 and included grain sizes up to 8·0 mm in diameter. Two grain‐size dependent transport patterns were observed, that of the finer grain‐size fraction (approximately < 0·25 mm) and that of a coarser grain‐size fraction (approximately ≥ 0·25 mm). The concentration of the fine fraction decreased with flow duration, peaking near the beginning of a flow event and declining thereafter. The concentration of the fine fraction showed slight trends with season and recovery period. The concentration of the coarse fraction displayed a slight negative trend with instantaneous discharge and was not correlated with event duration. These patterns typically produced a condition where the majority of the fine fraction of the sediment yield was evacuated out of the watershed before the hydrograph peak while the majority of the coarser sediment was evacuated during the falling limb of the hydrograph. Each grain‐size dependent transport pattern was likely influenced by the source of the associated sediment. At the flow event time scale, the fines were primarily wash load, supplied from the hillslopes and the coarser grains were entrained from the channel bed. Because transport patterns differ based on grain size, attempts to define the total sediment concentration and sediment yield by the behavior of a single grain‐size fraction may lead to erroneous results, especially when a large range of sediment grain sizes are present. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Sediment transport in rill flows exhibits the characteristics of non‐equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Data from flume studies are used to develop a model for predicting bed‐load transport rates in rough turbulent two‐dimensional open‐channel flows moving well sorted non‐cohesive sediments over plane mobile beds. The object is not to predict transport rates in natural channel flows but rather to provide a standard against which measured bed‐load transport rates influenced by factors such as bed forms, bed armouring, or limited sediment availability may be compared in order to assess the impact of these factors on bed‐load transport rates. The model is based on a revised version of Bagnold's basic energy equation ibsb = ebω, where ib is the immersed bed‐load transport rate, ω is flow power per unit area, eb is the efficiency coefficient, and sb is the stress coefficient defined as the ratio of the tangential bed shear stress caused by grain collisions and fluid drag to the immersed weight of the bed load. Expressions are developed for sb and eb in terms of G, a normalized measure of sediment transport stage, and these expressions are substituted into the revised energy equation to obtain the bed‐load transport equation ib = ω G 3·4. This equation applies regardless of the mode of bed‐load transport (i.e. saltation or sheet flow) and reduces to ib = ω where G approaches 1 in the sheet‐flow regime. That ib = ω does not mean that all the available power is dissipated in transporting the bed load. Rather, it reflects the fact that ib is a transport rate that must be multiplied by sb to become a work rate before it can be compared with ω. It follows that the proportion of ω that is dissipated in the transport of bed load is ibsb/ω, which is approximately 0·6 when ib = ω. It is suggested that this remarkably high transport efficiency is achieved in sheet flow (1) because the ratio of grain‐to‐grain to grain‐to‐bed collisions increases with bed shear stress, and (2) because on average much more momentum is lost in a grain‐to‐bed collision than in a grain‐to‐grain one. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Suspended sediment plays an important role in the distribution and transport of many pollutants (such as radionuclides) in rivers. Pollutants may adsorb on fine suspended particles (e.g. clay) and spread according to the suspended sediment movement. Hence, the simulation of the suspended sediment mechanism is indispensable for realistic transport modelling. This paper presents and tests a simple mathematical model for predicting the suspended sediment transport in river networks. The model is based on the van Rijn suspended load formula and the advection–diffusion equation with a source or sink term that represents the erosion or deposition fluxes. The transport equation is solved numerically with the discontinuous finite element method. The model evaluation was performed in two steps, first by comparing model simulations with the measured suspended sediment concentrations in the Grote Nete–Molse Nete River in Belgium, and second by a model intercomparison with the sediment transport model NST MIKE 11. The simulations reflect the measurements with a Nash‐Sutcliffe model efficiency of 0.6, while the efficiency between the proposed model and the NST MIKE 11 simulations is 0.96. Both evaluations indicate that the proposed sediment transport model, that is sufficiently simple to be practical, is providing realistic results.  相似文献   

8.
ABSTRACT

Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment discharges are first generated with the chosen model after which analytical expressions are derived for the expected value and variance of sediment accumulation in the reservoir. The expected value and variance of the volume of sediment accumulation in the reservoir are calculated from a thousand synthetic time series each 38 years long and compared to the analytical approach. Stochastic and analytical approaches perfectly trace the observation in terms of the expected value and variability. Therefore, it is concluded that the expected value and variance of sediment accumulation in a reservoir could be estimated by analytical expressions without the cost of synthetic data generation mechanisms.  相似文献   

9.
10.
The Butgenbach dam on the Warche River was built in 1932 in order to maintain a suf?cient supply of water to the Robertville reservoir situated 7 km downstream, for the production of hydroelectricity. During winter months, releases are made almost every day from the Butgenbach dam. From a hydrological point of view, this has resulted in signi?cantly reducing the number of discharges that are higher than bankfull. Despite the reduction in peak discharge, there is a signi?cant increase in the number of ef?cient discharges (0·6 bankfull). The impacts of these hydrological modi?cations on the bed morphology and sedimentology below the Butgenbach dam have been studied and the following geomorphological modi?cations have been identi?ed: a doubling of the width of the channel in 45 years, a reduction in the number of rif?es and pools, an increase in the number of gravel bars and islets and an increase in bedrock outcrops in the channel. Moreover, the ?nest bed particles are mobilized by the almost daily releases, inducing a signi?cant increase in bed‐material size sorting. The reduction of sinuosity and the disappearance of bed differentiation and rif?e/pool sequences have produced a diminution of bed roughness and an increase of the competence of the river. Thus relatively small ?oods can remove the armoured layer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Previously undocumented deposits are described that store suspended sediment in gravel‐bedded rivers, termed ‘fine‐grained channel margin’ (FGCM) deposits. FGCM deposits consist of sand, silt, clay, and organic matter that accumulate behind large woody debris (LWD) along the margins of the wetted perimeter of the single‐thread, gravel‐bed South River in Virginia. These deposits store a total mass equivalent to 17% to 43% of the annual suspended sediment load. Radiocarbon, 210Pb and 137C dating indicate that sediment in FGCM deposits ranges in age from 1 to more than 60 years. Reservoir theory suggests an average turnover time of 1·75 years and an annual exchange with the water column of a mass of sediment equivalent to 10% to 25% of the annual sediment load. The distribution of ages in the deposits can be fitted by a power function, suggesting that sediment stored in the deposits has a wide variety of transit times. Most sediment in storage is reworked quickly, but a small portion may remain in place for many decades. The presence of FGCM deposits indicates that suspended sediment is not simply transported downstream in gravel‐bed rivers in agricultural watersheds: significant storage can occur over decadal timescales. South River has a history of mercury contamination and identifying sediment sources and sinks is critical for documenting the extent of contamination and for developing remediation plans. FGCM deposits should be considered in future sediment budget and sediment transport modeling studies of gravel‐bed rivers in agricultural watersheds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In recent decades,a few Godunov-type,finite volume two-dimensional(2D)unstructured grid,coupled flow,and sediment models(GF2DUCM)have been developed for flows over erodible beds.These kinds of models are generally analyzed as a Vertex Model(VM)that define topography at the cell vertex,which can lead to the non-conservation of mass regarding flow,sediment,and bed evolution.Here,a full cellcantered variable storage method(Central Model or CM)is applied as the solution of the GF2DUCM.In this method,terrain elevation is defined at the cell centroids;this accurately describes the physical relations between the water depth and topography deformation.This approach can fully eliminate calculation errors in topography deformation at local cells caused by the interpolation of topography deformation at the cell vertex,and reduced uncertainty in the computation of the GF2DUCM.The model performance is systematically tested using a series of laboratory experiments,which demonstrate the mass conservation feature and high accuracy in reproducing hydrodynamic and morphological processes.  相似文献   

14.
This study analyses archival discharge and sediment concentration data (1965–1988), monitored by Water Survey of Canada, to examine suspended sediment transport rates and their relationship to effective discharge (Qeff) based on daily discharge duration curves. Effective discharge was determined as the mid‐point of the discharge class transporting the greatest portion of the suspended sediment load (hence class‐based Qeff). Results showed that the concept of effective discharge was applicable to the Fraser River basin where the average class‐based Qeff occurred during 8·4% of the study period with individual values ranging from 0·03% to 16·1%. The durations of effective discharge classes ranged from 0·02% to 19·6% while the transport of 50% of total sediment loads ranged from 3% to 22% with an average of 14% of the time. Equations for predicting the class‐based Qeff in the Fraser River basin from bankfull discharge and drainage area are presented. The observed variations among stations in sediment‐discharge regimes based on subjectively selected 20 discharge classes, seem to reflect the influence of sediment controlling factors such as geology, physiography, catchment size and land use practice in the basin. Future directions of research on applications of the effective discharge concept are explored. As a solution to the problem of lack of an objective method for determining the effective discharge, the effective discharge should be determined from event based assessments of sediment transport (event‐based Qeff), avoiding any subjectivity in the selection of number of discharge classes used for its determination. In conclusion, it is proposed that continued use of the conventional method of determining Qeff should cease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The operational time distribution (OTD) defines the time for bed‐load sediment spent in motion, which is needed to characterize the random nature of sediment transport. This study explores the influence of bed clusters and size gradation on OTD for non‐uniform bed‐loads. First, both static and mobile bed armouring experiments were conducted in laboratorial flumes to monitor the transport of mixed sand/gravel sediments. Only in the mobile armouring experiment did apparent bed clusters develop, because of stable feeding and a longer transport period. Second, a generalized subordinated advection (GSA) model was applied to quantify the observed dynamics of tracer particles. Results show that for the static armour layer (without sediment feed), the best‐fit OTD assigns more weight to the large displacement of small particles, likely because of the size‐selective entrainment process. The capacity coefficient in the GSA model, which affects the width of the OTD, is space dependent only for small particles whose dynamics can be significantly affected by larger particles and whose distribution is more likely to be space dependent in a mixed sand and gravel system. However, the OTD for the mobile armour layer (with sediment recirculation) exhibited longer tails for larger particles. This is because the trailing edge of larger particles is more resistant to erosion, and their leading front may not be easily trapped by self‐organized bed clusters. The strong interaction between particle–bed may cause the capacity coefficient to be space‐dependent for bed‐load transport along mobile armour layers. Therefore, the combined laboratory experiments and stochastic model analysis show that the OTD may be affected more by particle–bed interactions (such as clusters) than by particle–particle interactions (e.g. hiding and exposing), and that the GSA model can quantify mixed‐size sand/gravel transport along river beds within either static or mobile armour layers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Assessments of a stable channel were done to evaluate the conditions of three rivers in Malaysia,using an analytical method that modifies the stable channel flowchart developed by Chang(1988) and Ariffin(2004).The analytical approach was selected to calculate the suitable dimensions for a stable channel,using equations that describe the physical relation of sediment transport,flow resistance,and dynamic equilibrium.Measured field data were used as the input data for the stable channel program,wh...  相似文献   

17.
The behaviour of a discrete sub‐bank‐full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank‐full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank‐full stage, and be higher in both sub‐bank‐full and overbank flows. Factors contributing to enhanced flow loss in the sub‐bank‐full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

There are very few studies of fractured porous media that use distance- and time-dependent dispersion models, and, to the best of our knowledge, none which compare these with constant dispersion models. Therefore, in this study, the behaviour of temporal and spatial concentration profiles with distance- and time-dependent dispersion models is investigated. A hybrid finite volume method is used to solve the governing equations for these dispersion models. The developed numerical model is used to study the effects of matrix diffusion coefficient, groundwater velocity and matrix and fracture retardation factor on concentration profiles in the application of constant, distance-dependent and time-dependent dispersion models. In addition, an attempt is made to evaluate the applicability of these dispersion models by using the models to simulate experimental data. It was found that a better fit to the observed data is obtained in the case of distance- and time-dependent dispersion models as compared to the constant dispersion model. Thus, these numerical experiments indicate that distance- and time-dependent dispersion models have better simulation potential than the constant dispersion model.  相似文献   

19.
This paper presents an evaluation of the feasibility and the reliability of a visual characterization technique for gravel–cobble river bed surface substrate. Based on principal axis regressions, using phi scale (ϕ), comparisons of visual estimation and grid sampling techniques show that useful predictive relations (R2 = 0·78–0·88) exist between visual estimates of the surface d16, d50 and d84 and estimates obtained for the same percentiles with the grid sampling technique. Comparisons of visual estimation and the surface‐bulk sampling technique also indicate a predictive relation (R2 = 0·70) between the d50 of the two methods. Trained operators can visually estimate gravel–cobble bed surface d16 to uncertainties of 41 per cent, d50 to 15 per cent and d84 to 11 per cent (for example, there is a 5·5 mm error on a d84 size of 50 mm). Furthermore, evidence shows that if operators are properly trained, a calibration relation for each percentile can be applied independently of operators. This visual characterization allows effective detailed mapping of spatial patterns in substrate size distribution along extensive reaches of gravel‐bed rivers. The technique can be very useful in creating terrain models for various geomorphological, hydrological and biological applications such as the determination of entrainment thresholds, hydraulic roughness and substrate suitability for benthic insects or salmonid habitat. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The main purpose of this work concerns the development and testing of an overland flow model based on the two‐dimensional fully dynamic shallow water equations. Three key aspects, fundamental to get accurate, efficient and robust computation of surface runoff at basin scale, are discussed by transferring the main findings obtained by the recent research on the topic of dam‐break wave and flood propagation in the context of rainfall–runoff modelling. In particular, attention is focused on the numerical flux and bottom slope source terms computation, on a numerical treatment of friction slope terms and on an algorithm for dealing with wetting/drying fronts. The performances of the numerical model have been preliminarily evaluated using experimental or ideal tests characterized by very critical conditions for the stability of a numerical model. Then, attention was focused on a real event occurred in a sub‐basin of Reno river in Italy to analyse the suitability of the model in simulating real flood situations. The numerical results highlight the good performances of the model in all the simulations discussed in the paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号