首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permanent fault displacements (PFDs) because of fault ruptures emerging at the surface are critical for seismic design and risk assessment of continuous pipelines. They impose significant compressive and tensile strains to the pipe cross‐section at pipe‐fault crossings. The complexity of fault rupture, inaccurate mapping of fault location and uncertainties in fault‐pipe crossing geometries require probabilistic approaches for assessing the PFD hazard and mitigating pipeline failure risk against PFD. However, the probabilistic approaches are currently waived in seismic design of pipelines. Bearing on these facts, this paper first assesses the probabilistic PFD hazard by using Monte Carlo‐based stochastic simulations whose theory and implementation are given in detail. The computed hazard is then used in the probabilistic risk assessment approach to calculate the failure probability of continuous pipelines under different PFD levels as well as pipe cross‐section properties. Our probabilistic pipeline risk computations consider uncertainties arising from complex fault rupture and geomorphology that result in inaccurate mapping of fault location and fault‐pipe crossings. The results presented in this paper suggest the re‐evaluation of design provisions in current pipeline design guidelines to reduce the seismic risk of these geographically distributed structural systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

3.
基于动力子结构方法的场地地震反应分析方法   总被引:2,自引:1,他引:1  
本文验证了将约束子结构法引入到复杂场地地震反应分析的可行性,并在此基础上提出了两种进一步提高计算效率的简化措施。结合土层有限元模型的自身特点,提出了标准子结构的概念,通过设置标准子结构,可减少相同子结构的重复计算。基于约束子结构本身的性质,假定土层计算区域为局部非线性,可简化等效线性化分析过程,通过数值试验给出了局部非线性区域的取值范围。算例表明,上述简化措施在提高大规模复杂场地地震反应分析计算效率方面具有显著的优势。  相似文献   

4.
The mid‐story isolation design method is recently gaining popularity for the seismic protective design of buildings located in the areas of high population. In a mid‐story isolated building, the isolation system is incorporated into the mid‐story rather than the base of the building. In this paper, the dynamic characteristics and seismic responses of mid‐story isolated buildings are investigated using a simplified three‐lumped‐mass structural model for which equivalent linear properties are formulated. From the parametric study, it is found that the nominal frequencies of the superstructure and the substructure, respectively, above and below the isolation system have significant influences on the isolation frequency and equivalent damping ratio of a mid‐story isolated building. Moreover, the mass and stiffness of the substructure are of greater significance than the superstructure in affecting the dynamic characteristics of the isolated building. Besides, based on the response spectrum analysis, it is noted that the higher mode responses may contribute significantly to the story shear force of the substructure. Consequently, the equivalent lateral force procedure of design codes should carefully include the effects of higher modes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
基于位移的概率极限状态设计   总被引:1,自引:0,他引:1  
尽管近年来国内外学者提出了多种基于位移的抗震设计方法,但采用的与位移相关的反应谱大多是平均谱,设计过程可以看作是确定性的。基于位移的抗震设计应该建立在可靠度理论基础之上。利用作者在概率延性需求谱方面已有的研究成果和可靠度分析方法——验算点法,本文提出了根据基于位移的目标可靠指标直接进行结构设计的方法,并给出了设计流程图。为便于工程应用,在进行了大量分析计算之后,本文建议了基于位移的概率极限状态分项系数设计表达式,并确定了其中的分项系数。最后,本文对一8层框架结构采用建议的分项系数设计表达式进行了设计,并对有待于进一步研究的问题进行了简要分析。  相似文献   

7.
This paper examines the potential development of a probabilistic design methodology, considering hysteretic energy demand, within the framework of performance‐based seismic design of buildings. This article does not propose specific energy‐based criteria for design guidelines, but explores how such criteria can be treated from a probabilistic design perspective. Uniform hazard spectra for normalized hysteretic energy are constructed to characterize seismic demand at a specific site. These spectra, in combination with an equivalent systems methodology, are used to estimate hysteretic energy demand on real building structures. A design checking equation for a (hypothetical) probabilistic energy‐based performance criterion is developed by accounting for the randomness of the earthquake phenomenon, the uncertainties associated with the equivalent system analysis technique, and with the site soil factor. The developed design checking equation itself is deterministic, and requires no probabilistic analysis for use. The application of the proposed equation is demonstrated by applying it to a trial design of a three‐storey steel moment frame. The design checking equation represents a first step toward the development of a performance‐based seismic design procedure based on energy criterion, and additional works needed to fully implement this are discussed in brief at the end of the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The paper aims at evaluating the influence of damper properties on the probabilistic seismic response of structural systems equipped with nonlinear viscous dampers. For this purpose, a linear single‐degree‐of‐freedom system with an added linear or nonlinear viscous damper is considered, and the response statistics are evaluated for a set of natural records describing the ground motion uncertainty. A dimensional analysis of the seismic problem is carried out first to identify the minimum set of characteristic parameters describing the system and controlling the seismic response. An extensive parametric study is then performed to estimate the influence of the damper properties on the statistics of the main response quantities of interest (i.e. maximum displacements, accelerations and damper forces), for a wide range of values of the characteristic parameters. Finally, a set of case studies is investigated to show some interesting issues concerning the influence of the damper nonlinear behaviour on the evaluation of the system reliability and to highlight some limitations of current deterministic approaches neglecting the probabilistic properties of the response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper analyzes the influence of damper properties on the probabilistic seismic performance of building frames equipped with viscous dampers. In particular, a probabilistic methodology is employed to evaluate the influence of the damper nonlinearity, measured by the damper exponent, on the performance of structural and nonstructural components of building frames, as described by the response hazard curves of the relevant engineering demand parameters. The performance variations due to changes in the damper nonlinearity level are evaluated and highlighted by considering two realistic design scenarios and by comparing the results of a set of cases involving dampers with different exponents designed to provide the same deterministic performance. By this way, it is possible to evaluate the influence of the nonlinear response and of its dispersion on the demand hazard. It is shown that the damper nonlinearity level strongly affects the seismic performance and different trends are observed for the demand parameters of interest. A comparison with code provisions shows that further investigation is necessary to provide more reliable design formulas accounting for the damping nonlinearity level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Earthquake‐induced pounding of adjacent structures can cause severe structural damage, and advanced probabilistic approaches are needed to obtain a reliable estimate of the risk of impact. This study aims to develop an efficient and accurate probabilistic seismic demand model (PSDM) for pounding risk assessment between adjacent buildings, which is suitable for use within modern performance‐based engineering frameworks. In developing a PSDM, different choices can be made regarding the intensity measures (IMs) to be used, the record selection, the analysis technique applied for estimating the system response at increasing IM levels, and the model to be employed for describing the response statistics given the IM. In the present paper, some of these choices are analyzed and evaluated first by performing an extensive parametric study for the adjacent buildings modeled as linear single‐degree‐of‐freedom systems, and successively by considering more complex nonlinear multi‐degree‐of‐freedom building models. An efficient and accurate PSDM is defined using advanced intensity measures and a bilinear regression model for the response samples obtained by cloud analysis. The results of the study demonstrate that the proposed PSDM allows accurate estimates of the risk of pounding to be obtained while limiting the number of simulations required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The seismic response of elasto‐plastic structures to both recorded and generated accelerograms is characterized by a large scattering of the results, even for accelerograms with similar peak ground acceleration values and frequency content. According to current code recommendations a design value of the seismic response of an elasto‐plastic structure can be computed as the mean of the responses to a certain number of spectrum‐fitting generated accelerograms. A more effective probabilistic approach is presented herein. It allows the analyst to calculate a design value of the seismic response characterized by a predefined non‐exceedance probability using a limited number of generated accelerograms. The results of the performed analyses are presented in diagrams that can be used for structural design applications. The applicability of the proposed method is demonstrated in the case of an elasto‐plastic structural system and the results are compared with those obtained applying current code recommendations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In the presented practice‐oriented probabilistic approach for the seismic performance assessment of building structures, the SAC‐FEMA method, which is a part of the broader PEER probabilistic framework and permits probability assessment in closed form, is combined with the pushover‐based N2 method. The most demanding part of the PEER probabilistic framework, that is incremental dynamic analysis, is replaced by the much simpler N2 method, which requires considerably less input data and much less computational time, but which can, nevertheless, often provide: acceptable estimates for the mean values of the structural response. Using some additional simplifying assumptions that are consistent with seismic code procedures, an explicit equation for a quick estimation of the annual probability of “failure” (i.e. the probability of exceeding the near collapse limit state) of a structure can be derived, which is appropriate for practical applications, provided that predetermined default values for the dispersion measures are available. In the paper, this simplified approach is summarized and applied to the estimation of the “failure” probability of reinforced concrete frame buildings representing both old structures, not designed for earthquake resistance, and new structures designed according to Eurocode 8. The results of the analyses indicate a high probability of the “failure” of buildings, which have not been designed for seismic loads. For a building designed according to a modern code, the conservatively determined probability of “failure” is about 30 times less but still significant (about 1% over the lifetime of the structure). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examines the calculation of the seismic demand hazard in a practice‐oriented manner via the use of seismic response analyses at few intensity levels. The seismic demand hazard is a more robust measure for quantifying seismic performance, when seismic hazard is represented in a probabilistic format, than intensity‐based assessments, which remain prevalent in seismic design codes. It is illustrated that, for a relatively complex bridge–foundation–soil system case study, the seismic demand hazard can be estimated with sufficient accuracy using as little as three intensity measure levels that have exceedance probabilities of 50%, 10% and 2% in 50 years which are already of interest in multi‐objective performance‐based design. Compared with the conventional use of the mean demand from an intensity‐based assessment(s), it is illustrated that, for the same number of seismic response analyses, a practice‐oriented ‘approximate’ seismic demand hazard is a more accurate and precise estimate of the ‘exact’ seismic demand hazard. Direct estimation of the seismic demand hazard also provides information of seismic performance at multiple exceedance rates. Thus, it is advocated that if seismic hazard is considered in a probabilistic format, then seismic performance assessment, and acceptance criteria, should be in terms of the seismic demand hazard and not intensity‐based assessments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an integrated approach for evaluating seismic hazard and establishing ground motion at a site. In this approach, we combine the advantage of probabilistic and deterministic seismic hazard analyses and generate synthetic ground motion by considering the characteristics of seismic source, path attenuation, and local soil condition. Furthermore, uncertainties in seismic and soil parameters are taken into account. The proposed approach can be used to establish site-specific ground motion for engineering applications.  相似文献   

16.
实现从构造勘探向岩性勘探阶段的转变,是煤田地震勘探亟待解决的重要问题。其中,地震反演技术是岩性勘探的一种重要手段。为了规避常规反演方法的固有限制,利用概率神经网络技术预测井数据和地震数据之间的非线性关系,得到密度数据体和速度数据体,并获得相应的波阻抗数据体。对某矿区的实际地震资料采用该技术进行岩性反演,得到了较为准确的波阻抗数据体,为岩性解释提供了不可或缺的资料。  相似文献   

17.
杨章  谷青 《内陆地震》1990,4(3):211-221
采用多因子综合概率法估计了乌鲁木齐市区及矿区的地震危险性。根据地震地质、地球物理场,地震活动性的研究,划分了潜在震源区,确定了震源区的地震活动性参数。应用以结构可靠度理论为基础的震损概率法,预测了乌鲁木齐的地震灾害。提出了减灾对策。  相似文献   

18.
This paper deals with floor acceleration spectra, which are used for the seismic design and assessment of acceleration‐sensitive equipment installed in buildings. In design codes and in practice, not enough attention has been paid to the seismic resistance of such equipment. An ‘accurate’ determination of floor spectra requires a complex and quite demanding dynamic response history analysis. The purpose of the study presented in this paper is the development of a direct method for the determination of floor acceleration spectra, which enables their generation directly from the design spectrum of the structure, by taking into account the structure's dynamic properties. The method is also applicable to inelastic structures, which can greatly improve the economic aspects of equipment design. A parametric study of floor acceleration spectra for elastic and inelastic single‐degree‐of‐freedom (SDOF) and multiple‐degree‐of‐freedom structures was conducted by using (non)linear response history analysis. The equipment was modelled as an elastic single‐degree‐of‐freedom system. The proposed method was validated by comparing the results obtained with the more accurate results obtained in a parametric study. Due to its simplicity, the method is an appropriate tool for practice. In the case of inelastic structural behaviour, the method should be used in combination with the N2 method, or another appropriate method for simplified nonlinear structural analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents the effect of isolator and substructure properties as well as the frequency characteristics and intensity of the ground motion on the performance of seismic‐isolated bridges (SIBs) and examines some critical design clauses in the AASHTO Guide Specification for Seismic Isolation Design. For this purpose, a parametric study, involving more than 800 non‐linear time history analyses of simplified structural models representative of typical SIBs, is conducted. The results from the parametric study are then used to derive important design recommendations and conclusions that may be used by bridge engineers to arrive to a more sound and economical design of SIBs. It is found that the SIB response is a function of the peak ground acceleration to peak ground velocity ratio of the ground motion. Thus, the choice of the seismic ground motion according to the characteristics of the bridge site is crucial for a correct design of the SIB. It is also found that the characteristic strength of the isolator may be chosen based on the intensity and frequency characteristics of the ground motion. Furthermore, the isolator post‐elastic stiffness is found to have a notable effect on the response of SIBs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A probabilistic representation of the entire ground‐motion time history can be constructed based on a stochastic model that depends on seismic source parameters. An advanced stochastic simulation scheme known as Subset Simulation can then be used to efficiently compute the small failure probabilities corresponding to structural limit states. Alternatively, the uncertainty in the ground motion can be represented by adopting a parameter (or a vector of parameters) known as the intensity measure (IM) that captures the dominant features of the ground shaking. Structural performance assessment based on this representation can be broken down into two parts, namely, the structure‐specific part requiring performance assessment for a given value of the IM, and the site‐specific part requiring estimation of the likelihood that ground shaking with a given value of the IM takes place. The effect of these two alternative representations of ground‐motion uncertainty on probabilistic structural response is investigated for two hazard cases. In the first case, these two approaches are compared for a scenario earthquake event with a given magnitude and distance. In the second case, they are compared using a probabilistic seismic hazard analysis to take into account the potential of the surrounding faults to produce events with a range of possible magnitudes and distances. The two approaches are compared on the basis of the probabilistic response of an existing reinforced‐concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake in Los Angeles, California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号