首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The availability of airborne LiDAR data provides a new opportunity to overcome some of the problems associated with traditional, field‐based, geomorphological mapping such as restrictions on access and constraints of time or cost. The combination of airborne LiDAR data and GIS technology facilitates the rapid production of geomorphological maps of floodplain environments; however, unfiltered LiDAR data, which include vegetation and buildings, are currently more suitable for geomorphological mapping than data that have been filtered to remove these features. Classification of LiDAR data according to elevation in a GIS enables the user to identify and delineate geomorphological features in a manner similar to field mapping, but it is necessary to use a range of classification intervals in order to map the various types of feature that occur within a single reach. Comparison of a LiDAR‐derived geomorphological map with an independently produced field geomorphological map showed a high degree of similarity between the results of the two methods, although ground‐truthing is essential in cases where a high degree of accuracy is required. Ground‐truthing of a LiDAR‐derived geomorphological map showed that around 80% of features mapped using both methods were identified from the LiDAR data, suggesting that the method is suitable for applications such as production of base maps for use in field mapping and selection of sites for detailed investigation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This study developed and evaluated a hybrid approach to remote measurement of river morphology that combines LiDAR topography with spectrally based bathymetry. Comparison of filtered LiDAR point clouds with surveyed cross‐sections indicated that subtle features on low‐relief floodplains were accurately resolved by LiDAR but that submerged areas could not be detected due to strong absorption of near‐infrared laser pulses by water. The reduced number of returns made the active channel evident in a LiDAR point density map. A second dataset suggested that pulse intensity also could be used to discriminate land from water via a threshold‐based masking procedure. Fusion of LiDAR and optical data required accurate co‐registration of images to the LiDAR, and we developed an object‐oriented procedure for achieving this alignment. Information on flow depths was derived by correlating pixel values with field measurements of depth. Highly turbid conditions dictated a positive relation between green band radiance and flow depth and contributed to under‐prediction of pool depths. Water surface elevations extracted from the LiDAR along the water's edge were used to produce a continuous water surface that preserved along‐channel variations in slope. Subtracting local flow depths from this surface yielded estimates of the bed elevation that were then combined with LiDAR topography for exposed areas to create a composite representation of the riverine terrain. The accuracy of this terrain model was assessed via comparison with detailed field surveys. A map of elevation residuals showed that the greatest errors were associated with underestimation of pool depths and failure to capture cross‐stream differences in water surface elevation. Nevertheless, fusion of LiDAR and passive optical image data provided an efficient means of characterizing river morphology that would not have been possible if either dataset had been used in isolation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Airborne light detection and ranging (LiDAR) bathymetry appears to be a useful technology for bed topography mapping of non‐navigable areas, offering high data density and a high acquisition rate. However, few studies have focused on continental waters, in particular, on very shallow waters (<2 m) where it is difficult to extract the surface and bottom positions that are typically mixed in the green LiDAR signal. This paper proposes two new processing methods for depth extraction based on the use of different LiDAR signals [green, near‐infrared (NIR), Raman] of the SHOALS‐1000T sensor. They have been tested on a very shallow coastal area (Golfe du Morbihan, France) as an analogy to very shallow rivers. The first method is based on a combination of mathematical and heuristic methods using the green and the NIR LiDAR signals to cross validate the information delivered by each signal. The second method extracts water depths from the Raman signal using statistical methods such as principal components analysis (PCA) and classification and regression tree (CART) analysis. The obtained results are then compared to the reference depths, and the performances of the different methods, as well as their advantages/disadvantages are evaluated. The green/NIR method supplies 42% more points compared to the operator process, with an equivalent mean error (?4·2 cm verusu ?4·5 cm) and a smaller standard deviation (25·3 cm verusu 33·5 cm). The Raman processing method provides very scattered results (standard deviation of 40·3 cm) with the lowest mean error (?3·1 cm) and 40% more points. The minimum detectable depth is also improved by the two presented methods, being around 1 m for the green/NIR approach and 0·5 m for the statistical approach, compared to 1·5 m for the data processed by the operator. Despite its ability to measure other parameters like water temperature, the Raman method needed a large amount of reference data to provide reliable depth measurements, as opposed to the green/NIR method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Mountain rivers can be subject to strong constraints imposed by changes in gradient and grain size supplied by processes such as glaciation and rockfall. Nonetheless, adjustments in the channel geometry and hydraulics of mountain rivers at the reach scale can produce discernible patterns analogous to those in fully alluvial rivers. Mountain rivers can differ in that imposed reach‐scale gradient is an especially important control on reach‐scale channel characteristics, as indicated by examination of North St Vrain Creek in Colorado. North St Vrain Creek drains 250 km2 of the Rocky Mountains. We used 25 study reaches within the basin to examine controls on reach‐scale channel geometry. Variables measured included channel geometry, large woody debris, grain size, and mean velocity. Drainage area at the study reaches ranged from 2·2 to 245 km2, and gradient from 0·013 to 0·147 m m?1. We examined correlations among (1) potential reach‐scale response variables describing channel bankfull dimension and shape, hydraulics, bedform wavelength and amplitude, grain size, ?ow resistance, standard deviation of hydraulic radius, and volume of large woody debris, and (2) potential control variables that change progressively downstream (drainage area, discharge) or that are likely to re?ect a reach‐speci?c control (bed gradient). We tested the hypothesis that response variables correlate most strongly with local bed gradient because of the segmented nature of mountain channels. Results from simple linear regression analyses indicate that most response variables correlate best with gradient, although channel width and width/depth ratio correlate best with discharge. Multiple regression analyses using Mallow's Cp selection criterion and log‐transformation of all variables produced similar results in that most response variables correlate strongly with gradient. These results suggest that the hypothesis is partially supported: channel bed gradient is likely to be a good predictor for many reach‐scale response variables along mountain rivers, but discharge is also an important predictor for some response variables. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Spectrally based remote sensing of river bathymetry   总被引:1,自引:0,他引:1  
This paper evaluates the potential for remote mapping of river bathymetry by (1) examining the theoretical basis of a simple, ratio‐based technique for retrieving depth information from passive optical image data; (2) performing radiative transfer simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state; (3) assessing the accuracy of spectrally based depth retrieval under field conditions via ground‐based reflectance measurements; and (4) producing bathymetric maps for a pair of gravel‐bed rivers from hyperspectral image data. Consideration of the relative magnitudes of various radiance components allowed us to define the range of conditions under which spectrally based depth retrieval is appropriate: the remotely sensed signal must be dominated by bottom‐reflected radiance. We developed a simple algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which this critical assumption is valid and which yield strong, linear relationships between an image‐derived quantity X and flow depth d. OBRA of simulated spectra indicated that water column optical properties were accounted for by a shorter‐wavelength numerator band sensitive to scattering by suspended sediment while depth information was provided by a longer‐wavelength denominator band subject to strong absorption by pure water. Field spectra suggested that bottom reflectance was fairly homogeneous, isolating the effect of depth, and that radiance measured above the water surface was primarily reflected from the bottom, not the water column. OBRA of these data, 28% of which were collected during a period of high turbidity, yielded strong X versus d relations (R2 from 0·792 to 0·976), demonstrating that accurate depth retrieval is feasible under field conditions. Moreover, application of OBRA to hyperspectral image data resulted in spatially coherent, hydraulically reasonable bathymetric maps, though negative depth estimates occurred along channel margins where pixels were mixed. This study indicates that passive optical remote sensing could become a viable tool for measuring river bathymetry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Estimating the probability of river channel adjustment   总被引:1,自引:0,他引:1  
River channels respond not only to natural external controls, and natural controls internal to individual drainage basins, but also to the influence of human activity. Although many site-specific instances of change have been documented, the complexity of the process interactions means that very little is known about the general nature of different styles of adjustment, or their relative sensitivity to drainage basin controls. Data obtained from the Thames Basin, southeast England, are used in a probabilistic approach to differentiate between four styles of river channel adjustment and a variety of drainage basin characteristics. Adopting a probabilistic approach quantifies the degree of confidence attributable to any prediction of river channel adjustment while acknowledging that certainties are difficult to obtain in studies of the natural environment. This approach could thus allow environmental planning decisions to be made with a quantified degree of uncertainty. Four multivariate logistic regression models are described which use a combination of continuous and categorical variables to associate drainage basin characteristics with four styles of river channel adjustment derived from a reconnaissance evaluation survey. In comparison, it is shown that laterally migrating river channels are the most common ‘natural’ channel type in the Thames Basin, and their probability of occurrence rises to 71 per cent in sand/gravel environments. In channels regulated by low weirs, deposition is the most likely channel activity where gradients are lower than 0·0040, whilst above this threshold the majority of channels are morphologically inactive. In urban channels, many of which are also lined by concrete, the likelihood of obtaining a stable channel is mostly in excess of 80 per cent. In channels straightened during this century, deposition is most likely in gradients below 0·0050, whereas erosional enlargement is most probable above this value. In channels which were initially channelized prior to this century, deposition gives way to stability at a threshold gradient of 0·0080.  相似文献   

7.
The stream power incision model (SPIM) is a cornerstone of quantitative geomorphology. It states that river incision rate is the product of drainage area and channel slope raised to the power exponents m and n, respectively. It is widely used to predict patterns of deformation from channel long profile inversion or to model knickpoint migration and landscape evolution. Numerous studies have attempted to test its applicability with mixed results prompting the question of its validity. This paper synthesizes these results, highlights the SPIM deficiencies, and offers new insights into the role of incision thresholds and channel width. By reviewing quantitative data on incising rivers, I first propose six sets of field evidence that any long‐term incision model should be able to predict. This analysis highlights several inconsistencies of the standard SPIM. Next, I discuss the methods used to construct physics‐based long‐term incision laws. I demonstrate that all published incising river datasets away from knickpoints or knickzones are in a regime dominated by threshold effects requiring an explicit upscaling of flood stochasticity neglected in the standard SPIM and other incision models. Using threshold‐stochastic simulations with dynamic width, I document the existence of composite transient dynamics where knickpoint propagation locally obeys a linear SPIM (n=1) while other part of the river obey a non‐linear SPIM (n>1). The threshold‐stochastic SPIM resolves some inconsistencies of the standard SPIM and matches steady‐state field evidence when width is not sensitive to incision rate. However it fails to predict the scaling of slope with incision rate for cases where width decreases with incision rate. Recent proposed models of dynamic width cannot resolve these deficiencies. An explicit upscaling of sediment flux and threshold‐stochastic effects combined with dynamic width should take us beyond the SPIM which is shown here to have a narrow range of validity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Major hydraulic discontinuities along lowland rivers may be caused by water impoundment behind weirs, by tributary floods, and by tides. An analysis of the geometry of 122 surveyed channel cross-sections located on an 18 km reach of the lower River Dee identifies up to three levels in the bank profile representing minima in the width:mean depth ratio, and distinct changes in the geometric properties of the channel to these three levels in a downstrem direction and within four stretches influenced to varying degrees by hydraulic discontinuities created by a weir and by tidal overtopping of the weir. Simple modelling combined with field observations suggest possible processes that may control the observed changes in channel morphology. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Fully physics‐based, process‐level, distributed fluid flow and reactive transport hydrological models are rarely used in practice until recent years. These models are useful tools to help understand the fundamental physical, chemical, and biological processes that take place in nature. In this study, sensitivity analyses based on a mountain area river basin modelling study are performed to investigate the effect of river channel geometric characteristics on downstream water flow. Numerical experiments show that reduction in the river channel geometric measurement interval may not significantly affect the downstream water stage simulation as long as measurement accuracy at special nodes is guaranteed. The special upstream nodes include but are not limited to 1) nodes located close to the observation station, 2) nodes near the borders of different land covers with considerable riverbed roughness changes, 3) nodes at entering points of tributaries causing discharge jump and 4) nodes with a narrow cross‐section width that may control the flow conditions. This information provides guidelines for field investigation to efficiently obtain necessary geometric data for physics‐based hydrological modelling. It is especially useful in alpine areas such as the Tibetan Plateau where field investigation capability is limited under severe topography and climate condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Digital elevation models (DEMs) of river channel bathymetries are developed by interpolating elevations between data collected at discrete points or along transects. The accuracy of interpolated bathymetries depends on measurement error, the density and distribution of point data, and the interpolation method. Whereas point measurement errors can be minimized by selecting the most efficient equipment, the effect of data density and interpolation method on river bathymetry is relatively unknown. Thus, this study focuses on transect‐based collection methods and investigates the effects of transect location, the spacing between transects, and interpolation methods on the accuracy of interpolated bathymetry. This is accomplished by comparing four control bathymetries generated from accurate and high resolution, sub‐meter scale data to bathymetries interpolated from transect data extracted from the control bathymetries using two transect locating methods and four interpolation methods. The transect locating methods are a morphologically‐spaced and an equally‐spaced model. The four interpolation methods are Ordinary Kriging, Delaunay Triangulation, and Simple Linear, which are applied in curvilinear coordinates (Delaunay Triangulation is also applied in Cartesian coordinates), and Natural Neighbor only in Cartesian Coordinates. The bathymetric data were obtained from morphologically simple and complex reaches of a large (average bankfull width = 90 m) and a small (average bankfull width = 17 m) river. The accuracy of the developed DEMs is assessed using statistical analysis of the differences between the control and interpolated bathymetries and hydraulic parameters assessed from bankfull water surface elevations. Results indicate that DEM accuracy is not influenced by the choice of transect location method (with same averaged cross‐section spacing) or a specific interpolation method, but rather by the coordinate system for which the interpolation method is applied and the spacing between transects. They also show negligible differences between the mean depths and surface areas calculated from bathymetries with dense or coarse spacing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Stream biophysical processes are commonly studied using multi-dimensional numerical modelling that quantifies flow hydraulics from which parameters such as habitat suitability, stream carrying capacity, and bed mobility are derived. These analyses would benefit from accurate high-resolution stream bathymetries spanning tens of kilometres of channel, especially in small streams or where navigation is difficult. Traditional ground-based survey methods are limited by survey time, dense vegetation and stream access, and are usually only feasible for short reaches. Conversely, airborne topobathymetric LiDAR surveys may overcome these limitations, although limited research is available on how errors in LiDAR-derived digital elevation models (DEMs) might propagate through flow models. This study investigated the performance of LiDAR-derived topobathymetry in support of multi-dimensional flow modelling and ecohydraulics calculations in two gravel-bedded reaches (approximately 200 m long), one morphologically complex and one morphologically simple, and at the segment scale (32 km-long stream segment) along a 15 m-wide river in central Idaho, USA. We compared metre and sub-metre-resolution DEMs generated from RTK-GPS ground and Experimental Advanced Airborne Research LiDAR-B (EAARL-B) surveys and water depths, velocities, shear stresses, habitat suitability, and bed mobility modelled with two-dimensional (2D) hydraulic models supported by LiDAR and ground-surveyed DEMs. Residual statistics, bias (B), and standard deviation (SD) of the residuals between depth and velocity predicted from the model supported by LiDAR and ground-survey topobathymetries were up to −0.04 (B) and 0.09 m (SD) for depth and −0.09 (B) and 0.20 m s−1 (SD) for velocity. The accuracy (B = 0.05 m), precision (SD = 0.09 m), and point density (1 point m−2) of the LiDAR topobathymetric survey (regardless of reach complexity) were sufficient to support 2D hydrodynamic modelling and derivative stream habitat and process analyses, because these statistics were comparable to those of model calibration with B = 0 m and SD = 0.04 m for water surface elevation and B = 0.05 m s−1 and SD = 0.22 m s−1 for velocity in our investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
River networks have been shown to obey power scaling laws and to follow self‐organization principles. Their self‐similar (fractal) properties open a path to relate small scale and large scale hydrological processes, such as erosion, deposition or geological movements. However, the existence of a self‐similar dimension has only been checked using either the whole channel network or, on the contrary, a single channel link. No study has explicitly addressed the possible spatial variation of the self‐similar properties between these two extreme geomorphologic objects. Here, a new method based on self‐similarity maps (SSM) is proposed to spatially explore the stream length self‐similar dimension Dl within a river network. The mapping principle consists in computing local self‐similar dimensions deduced from a fit of stream length estimations using increasing divider sizes. A local uncertainty related to the fit quality is also computed and localized on every stream. To assess the efficiency of the approach, contrasted river networks are simulated using optimal channel networks (OCN), where each network is characterized by an exponent γ conditioning its overall topology. By building SSM of these networks, it is shown that deviations from uniform self‐similarity across space occur. Depending on the type of network (γ parameter), these deviations are or are not related to Strahler's order structure. Finally, it is found numerically that the structural averaged stream length self‐similar dimension Dl is closely related to the more functional γ parameter. Results form a bridge between the studies on river sinuosity (single channel) and growth of channel networks (watershed). As for every method providing spatial information where they were lacking before, the SSM may soon help to accurately interpret natural networks and help to simulate more realistic channel networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This study uses landform curvature as an approach for channel network extraction. We considered a study area located in the eastern Italian Alps where a high‐quality set of LiDAR data was available and where channel heads and related channel network were mapped in the field. In the analysis, we derived 1‐m DTMs from different ground LiDAR point densities, and we used different smoothing factors for the landscape curvature calculation in order to test the suitability of the LiDAR point density and the derived curvature maps for the recognition of channel network. This methodology is based on threshold values of the curvature calculated as multiples (1–3 times) of the standard deviation of the curvature. Our analyses suggested that (i) the window size for curvature calculations has to be a function of the size of the features to be detected, (ii) a coarse ground LiDAR point density could be as useful as a finer one for the recognition of main channel network features and (iii) rougher curvature maps are not optimal as they do not explore a sufficient range at which features occur, while smoother curvature maps overcome this problem and are more appropriate for the extraction of surveyed channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Meandering river sinuosity increases until the channel erodes into itself (neck cutoff) or forms a new channel over the floodplain (chute cutoff) and sinuosity is reduced. Unlike neck cutoff, which can be measured or modelled without considering overbank processes, chute cutoff must be at least partially controlled by channel-forming processes on the floodplain. Even though chute cutoff controls meandering river form, the processes that cause chute cutoff are not well understood. This study analyses the morphology of two incipient chute cutoffs along the East Fork White River, Indiana, USA, using high temporal and spatial resolution UAS-based LiDAR and aerial photography. LiDAR and aerial imagery obtained between 1998 and 2019 reveals that large scour holes formed in the centre of both chutes sometime after chute channel initiation. A larger analysis within the study watershed reveals that scour holes within incipient chutes can be stable or unstable, and tend to stabilize when the chute is colonized by native vegetation and forest. When the scour holes form in farmed floodplain, they enlarge rapidly after initial formation and contribute to complete chute cutoff. In addition, this study shows that the formation of scour holes can occur in response to common, relatively low-magnitude floods and that the amount of incipient chute erosion does not depend on peak flood magnitude. The role of scour holes in enlarging chute channels could be an important mechanism for chute channel evolution in meandering rivers. This study also confirms that understanding the relationships among flow, land cover, and cutoff morphology is substantially improved with on-demand remote sensing techniques like integrated UAS and LiDAR. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
A digital elevation model (DEM) of a fluvial environment represented landform surface variability well and provided a medium for monitoring morphological change over time. Elevation was measured above an arbitrary datum using a ground‐based three‐dimensional tacheometric survey in two reaches of the River Nent, UK, in July 1998, October 1998 (after flood conditions) and June 1999. A detailed geostatistical analysis of the elevation data was used to model the spatial variation of elevation and to produce DEMs in each reach and for each survey period. Maps of the difference in elevation were produced and volumetric change was calculated for each reach and each survey period. The parameters of variogram models were used to describe the morphological character of each reach and to elucidate the linkages between process and the form of channel change operating at different spatial and temporal scales. The analysis of channel change on the River Nent shows the potential of geostatistics for investigating the magnitude and frequency of geomorphic work in other rivers. A flood modified the channel features, but low magnitude and high frequency flows rationalized the morphology. In spite of relatively small amounts of net flux the channel features changed as a consequence of the reworking of existing material. The blocking of chute entrances and redirection of the channel had a considerable effect on the behaviour of the channel. Such small changes suggested that the distributary system was sensitive to variation in sediment regime. Plots of the kriging variances against sampling intervals were used to quantify the temporal variation in sampling redundancy (ranging between ?11 per cent and +93 per cent). These curves illustrated the importance of bespoke sampling designs to reduce sampling effort by incorporating anisotropic variation in space and geomorphic information on flow regime. Variation in the nugget parameter of the variogram models was interpreted as sampling inaccuracy caused by variability in particle size and is believed to be important for future work on surface roughness. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
River channel pattern transformation is dealt with in a broad background of suspended sediment concentration, varying from low, medium, high to hyperconcentration. Based on data from about 100 alluvial rivers in China, suspended sediment transport rate has been plotted against mean annual water discharge, showing that all points can be divided into four belts by three straight lines, as stable braided pattern, meandering pattern with ordinary sediment concentrations, wandering braided pattern, and meandering pattern with hyperconcentration of sediment. This picture of channel pattern transformation can be well explained by the law of the water flow's energy expenditure varying with its sediment concentration. The energy expenditure increases with sediment concentration, reaching a maximum, then declines. Rivers falling in different ranges of sediment concentrations adjust their own energy expenditure in different manners, leading to occurrence of different channel patterns. Project supported by the National Natural Science Foundation of China (Grant No. 49671011).  相似文献   

17.
The boat‐based, mobile mapping system (BoMMS) with a laser scanner allows the derivation of detailed riverine topographical data for fluvial applications. Combined with data acquisition from static terrestrial LiDAR (light detection and range) or mobile terrestrial LiDAR on the ground, boat‐based laser scanning enables a totally new field mapping approach for fluvial studies. The BoMMS approach is an extremely rapid methodology for surveying riverine topography, taking only 85 min to survey a reach approximately 6 km in length. The BoMMS approach also allowed an effective survey angle for deep river banks, which is difficult to achieve with aerial or static terrestrial LiDAR. Further, this paper demonstrates the three‐dimensional mapping of a point‐bar and its detailed morphology. Compared with the BoMMS surface, approximately, 80% and 96% of the terrestrial LiDAR points showed a height deviation of less than 2 cm and 5 cm, respectively, with an overall standard deviation of ± 2·7 cm. This level of accuracy and rapidity of data capture enables the mapping of post‐flood deposition directly after a flood event without an extensive time lag. Additionally, the improved object characterisation may allow for better 3D mapping of the point bar and other riverrine features. However, the shadow effect of the BoMMS survey in point bar mapping should be removed by additional LiDAR data to acquire entire riverine topography. The approach demonstrated allowed a large reach to be surveyed compared with static terrestrial LiDAR and increased the spatial limit of survey towards aerial LiDAR, but it maintains the same or even better temporal resolution as static terrestrial LiDAR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
How does river hydrology and morphology change due to tidal influence? We contend that this is a question of particular consequence to many earth surface disciplines, but one that has not been adequately addressed. Previous studies have relied on gradients in channel morphology and stratigraphy to infer energy regime of channels. However, in tidal rivers geomorphology influences the energy regime while the energy regime influences morphology; thus, geomorphic and stratigraphic patterns do not fully resolve the mechanisms which lead to change. We addressed this problem by comparing measurements of hydraulic energy and channel morphology along a tidal gradient to predictions of these characteristics in the absence of tides, and attributed the differences to tidal processes. Measurements of discharge, channel area, and energy dissipation (in kJ day–1) were made over a 24·8 hour period at four sites spanning the non‐tidal to tidal freshwater Newport River, NC. We then predicted those characteristics under non‐tidal conditions using hydraulic geometry relationships and literature values from coastal plain rivers. Discharge was enhanced more than 10‐fold by tide, and this tidal effect increased from upstream to downstream along the tidal gradient. Cross‐sectional area increased three‐fold due to tide. Energy dissipation measured in the upper tidal river was four‐fold lower than predicted to occur in the absence of tide because tides decreased average velocity and discharge. Energy dissipation measured downstream was similar to that predicted to occur without tides, although there was large uncertainty in predicted values downstream. While this limited dataset does not permit us to make broad generalizations for definitive models, it does provide a proof‐of‐concept for a new approach to addressing a critical problem at the interface of fluvial and coastal morphology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Most grain size monitoring is still being conducted by manual sampling in the field, which is time consuming and has low spatial representation. Due to new remote sensing methods, some limitations have been partly overcome, but methodological progress is still needed for large rivers as well as in underwater conditions. In this article, we tested the reliability of two methods along the Old Rhine River (France/Germany) to estimate the grain size distribution (GSD) in above-water conditions: (i) a low-cost terrestrial photosieving method based on an automatic procedure using Digital Grain Size (DGS) software and (ii) an airborne LiDAR topo-bathymetric survey. We also tested the ability of terrestrial photosieving to estimate the GSD in underwater conditions. Field pebble counts were performed to compare and calibrate both methods. The results showed that the automatic procedure of terrestrial photosieving is a reliable method to estimate the GSD of sediment patches in both above-water and underwater conditions with clean substrates. Sensitivity analyses showed that environmental conditions, including solar lighting conditions and petrographic variability, significantly influence the GSD from the automatic procedure in above-water conditions. The presence of biofilm in underwater conditions significantly altered the GSD estimation using the automatic procedure, but the proposed manual procedure overcame this problem. The airborne LiDAR topographic survey is an accurate method to estimate the GSD of above-water bedforms and is able to generate grain size maps. The combination of terrestrial photosieving and airborne topographic LiDAR methods is adapted to assess the GSD over several kilometers long reaches of large rivers. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号