首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
2.
Although catchment storage is an intrinsic control on the rainfall–runoff response of streams, direct measurement remains a major challenge. Coupled models that integrate long‐term hydrometric and isotope tracer data are useful tools that can provide insights into the dynamics of catchment storage and the volumes of water involved. In this study, we use a tracer‐aided hydrological model to characterize catchment storage as a dynamic control on system function related to streamflow generation, which also allows direct estimation of the nonstationarity of water ages. We show that in a wet Scottish upland catchment dominated by runoff generation from riparian peats (histosols) with high water storage, nonstationarity in water age distributions is only clearly detectable during more extreme wet and dry periods. This is explained by the frequency and longevity of hydrological connectivity and the associated relative importance of flow paths contributing younger or older waters to the stream. Generally, these saturated riparian soils represent large mixing zones that buffer the time variance of water age and integrate catchment‐scale partial mixing processes. Although storage simulations depend on model performance, which is influenced by input variability and the degree of isotopic damping in the stream, a longer‐term storage analysis of this model indicates a system that is only sensitive to more extreme hydroclimatic variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The impacts of forest conversion on runoff generation in the tropics have received much interest, but scientific progress is still hampered by challenging fieldwork conditions and limited knowledge about runoff mechanisms. Here, we assessed the runoff generation, flow paths and water source dynamics of a pristine rainforest catchment in Costa Rica using end member mixing analysis (EMMA) and a Bayesian mixing model (MixSIAR). Geochemical tracer data collected over a 4-week field campaign were combined with tritium data used to assess potential deeper groundwater flow pathways to the perennial stream. The streamflow composition was best captured using three end-members, namely throughfall, shallow (5–15 cm) and deeper (15–50 cm) soil water. We estimated the end-member contributions to the main stream and two tributaries using the two mixing approaches and found good agreement between results obtained from EMMA and MixSIAR. The system was overwhelmingly dominated by near-surface sources, with little evidence for deeper and older groundwater as tritium-derived baseflow mean transit time was between 2.0 and 4.4 years. The shallow soil flow pathway dominated streamflow contributions in the main stream (median 39% and 49% based on EMMA and MixSIAR, respectively), followed by the deeper soil (32% and 31%) and throughfall (25% and 19%). The two tributaries had even greater shallow soil water contributions relative to the main stream (83% and 74% for tributary A and 42% and 63% for tributary B). Tributary B had no detectable deep soil water contribution, reflecting the morphology of the hillslope (steeper slopes, shallower soils and lower vegetation density compared to hillslope A). Despite the short sampling campaign and associated uncertainties, this study allowed to thoroughly assess runoff generation mechanisms in a humid tropical catchment. Our results also provide a first comparison of two increasingly used mixing models and suggest that EMMA and MixSIAR yield comparable estimates of water source partitioning in this tropical, volcanic rainforest environment.  相似文献   

4.
Catchment scale hydrological process studies in southern Chile are of special interest as little research at this scale has been carried out in this region. In particular, the young volcanic ash soils, which are typical for this area, are not well understood in their hydrological behaviour. In addition, extensive land use changes require detailed knowledge of hydrological processes in disturbed as well as undisturbed catchments in order to estimate resulting risks of erosion, eutrophication, floods and droughts. This study focuses on data collection and experimental determination of relevant processes in an undisturbed forested catchment in the Andes of southern Chile. The here gained understanding of runoff generation can serve as a reference for comparison with sites subject to human intervention, improving estimation of the effects of land use change. Owing to the lack of long‐term data for this catchment it was necessary to replace long time series by a multitude of experimental methods covering as many aspects of the runoff generation process as possible. The methods used in this investigation include: measurements of streamflow, rainfall, throughfall, water chemistry, soil water dynamics, groundwater dynamics, soil physics, soil mineralogy, geo‐electrical sounding, and tracer techniques. Methods and equipment used during field campaigns are described and evaluated for usefulness versus expenditure (labour and financial costs). Selected results and the hypotheses developed from these findings are presented. The results suggest the importance of fast processes for rainfall runoff response on the one hand as well as considerable dampening effects of a large subsurface storage on the other hand. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Integrating stable isotope tracers into rainfall‐runoff models allows investigation of water partitioning and direct estimation of travel times and water ages. Tracer data have valuable information content that can be used to constrain models and, in integration with hydrometric observations, test the conceptualization of catchment processes in model structure and parameterization. There is great potential in using tracer‐aided modelling in snow‐influenced catchments to improve understanding of these catchments' dynamics and sensitivity to environmental change. We used the spatially distributed tracer‐aided rainfall‐runoff (STARR) model to simulate the interactions between water storage, flux, and isotope dynamics in a snow‐influenced, long‐term monitored catchment in Ontario, Canada. Multiple realizations of the model were achieved using a combination of single and multiple objectives as calibration targets. Although good simulations of hydrometric targets such as discharge and snow water equivalent could be achieved by local calibration alone, adequate capture of the stream isotope dynamics was predicated on the inclusion of isotope data in the calibration. Parameter sensitivity was highest, and most local, for single calibration targets. With multiple calibration targets, key sensitive parameters were still identifiable in snow and runoff generation routines. Water ages derived from flux tracking subroutines in the model indicated a catchment where runoff is dominated by younger waters, particularly during spring snowmelt. However, resulting water ages were most sensitive to the partitioning of runoff sources from soil and groundwater sources, which was most realistically achieved when isotopes were included in the calibration. Given the paucity of studies where hydrological models explicitly incorporate tracers in snow‐influenced regions, this study using STARR is an important contribution to satisfactorily simulating snowpack dynamics and runoff generation processes, while simultaneously capturing stable isotope variability in snow‐influenced catchments.  相似文献   

7.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

8.
Understanding runoff processes is critical to issues of water quality. Therefore, the main purpose of this paper is to test a methodology that can be used when continuous electrical conductivity (EC) data are recorded in a single control point and no more data are available along the catchment. Although both non‐tracer‐based and tracer‐based techniques have been used for two‐component hydrograph separation, EC‐based method proved to be more suitable to gain further insight into the runoff generation and can help clarifying water sources and flowpaths to the river. So the use of EC has allowed the separation of pre‐event (Qp) and event (Qe) water contribution in different types of flood events, the assessment of temporal behaviour of related elements and the calculation of Qp/Qe ratio and regression equations. However, the weaker correlations of some elements with discharge and with this ratio lead us to admit the existence of at least one third component of flow, which is characterized by dissolved organic carbon, SO42? and Cl?. This component presumably comes from a far‐stream source and through a subsurface flow and is the key for advancing in new findings on the catchment hydrology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

10.
The objective of this research is to improve the comprehension of the hydrological behaviour of natural catchments. The main originality of this work is to associate different types of measurement in order to obtain a better vision of hydrological processes responsible for streamflow generation. First, the hydrological behaviour is studied at the catchment scale by the application of environmental tracing. A three‐component mixing model based on the silica and calcium concentrations of water allows one to distinguish the contributions of direct precipitation, soil water and groundwater during flood generation. Despite the different hydrological responses observed between the four subcatchments studied, a common behaviour is apparent. Soil contribution increases with a rise in the basin humidity. The subsurface water dominates the generation of major floods, which occur in wet conditions. In order to discover the processes responsible for the important soil water contributions, a large‐scale time‐domain reflectometry experiment (64 probes) was conducted. On the whole, this experiment indicates that the water flow in soil is spatially quite heterogeneous and depends on local properties. Macropore flows were clearly identified during a rainfall simulator experiment. Preferential flows may be responsible for the important contribution of soil water and the heterogeneity of the soil moisture. In order to test this hypothesis, a dye‐tracing experiment was done. This new investigation confirms that an important part of soil water reaches the stream by preferential flows. So as to synthesize all these observations, a conceptual model is proposed. This model respects both the hydrochemical responses highlighted by the environmental tracing experiment and the observations done at the local scale. This conceptual model suggests that the important contribution of soil water is due to the extent of the hydrographic network and the role of preferential flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The paper reviews a number of possible fast and slow hydrological flow mechanisms to account for rapid runoff generation within a catchment. A new interpretation of the kinematic wave process is proposed which develops some of these concepts to explain rapid subsurface flow from a watershed. Evidence for the process is provided by the results from a laboratory soil core experiment and an investigation of the hydrology of a Dartmoor hillslope. A tension response was monitored in the soil core in which pressure waves were propagated downwards and expelled water from the base. The transmission of the wave down the core was considerably faster than the movement of a chloride tracer. The concept of this kinematic wave process and associated water flux was then extended to the Dartmoor watershed. Raindrops reaching the wet soil surface caused pressure waves to travel laterally downslope. During large rainstorms, the hillslope became hydrologically highly connected and the pressure waves forced existing water from seepage faces into the saturated area adjacent to the stream, contributing substantially to the stream discharge. A kinematic contributing area was defined, as determined by both rainfall–runoff ratios and geostatistical analyses of hillslope soil moisture contents, which extended over at least 65% of the catchment area. This kinematic wave theory is consistent with results of translatory flow and macropore flow models, and stable isotope field studies of ‘old/new’ water. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In response to growing concern about impacts of upland agricultural land management on flood risk, an intensely instrumented experimental catchment has been established at Pontbren, a sheep‐farmed headwater catchment of the River Severn, UK. Primary aims are to develop understanding of the processes governing flood generation and the associated impacts of land management practices, and to bridge the gap between process understanding and ability to predict effects on downstream flooding. To achieve this, the experiment is designed to operate at plot (~100 m2), hillslope (~0·1 km2) and small catchment scale (~10 km2). Hillslope‐scale data, from an under‐drained, agriculturally ‘improved’ pasture, show that drain flow is a dominant runoff process. However, depending on antecedent moisture conditions, overland flow may exceed drain flow rates and can be an important contributor to peak flow runoff at the hillslope‐scale. Flow, soil tension data and tracer tests confirm the importance of macropores and presence of perched water tables under ‘normal’ wet conditions. Comparisons of pasture runoff with that from within a 10 year‐old tree shelterbelt show significantly reduced overland flow due to the presence of trees and/or absence of sheep. Comparisons of soil hydraulic properties show significant increases in hydraulic conductivity and saturated moisture content of soil under trees compared to adjacent improved pasture. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This article describes an investigation on runoff generation at different scales in the forested catchment of the Sperbelgraben in the Emmental region (Swiss Prealps) where studies in the field of forest hydrology have a history of 100 years. It focuses on the analysis of soil profiles and the subsequent sprinkling experiments above them (1 m2), as well as on surface runoff measurements on larger plots (50 to 110 m2). In the Sperbelgraben investigation area, two very distinct runoff reactions could be observed. On the one hand, very high production of saturation overland flow was registered on wet areas of gleyic soils, with runoff coefficients between 0·39 and 0·94 for profile irrigation. On the other hand, almost no surface runoff was measured on Cambisols, with the exception at some sites of a hydrophobic reaction detected at the beginning of storms after dry periods (coefficients for profile irrigation: 0·01–0·16). This pattern was observed during 1 m2 soil plot irrigation and on surface runoff plots. Apart from a less distinctive signal of the water‐repellent litter layer on the larger surface runoff plots, the dominant hydrological processes at the two scales are the same. The determined runoff reaction at the two scales corresponds well with information from a forest site type map describing soil and vegetation characteristics and used as a substitute for a soil map in this study. Theoretical considerations describing forest influence on flood discharge are discussed and evaluated to be in good agreement with observations. These findings are a sound foundation for application in hydrological catchment modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Soil water, stream water, groundwater and rain water were sampled through a storm event in a moorland catchment. Samples were analysed for major ions and deuterium. Chloride and deuterium are used as tracers to enable separation of the stream runoff hydrograph into three components: rain, soil and groundwater. The results indicate that rain water arrives in the stream quickly during the event and contributes a significant volume to the runoff peak. The chemical signal in the rain water is, however, significantly damped, apparently due to mixing with soil water held in the catchment before the event. This is further modified before reaching the stream, apparently through mixing with a deeper groundwater component. Interpretation of tracer, chemistry and hydrological data to present an integrated picture of catchment hydrochemical response is difficult due to problems in the chemical and conceptual definition of the flow components.  相似文献   

15.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Ressi is a small (2.4 ha) forested catchment located in the Italian pre-Alps. The site became an experimental catchment to investigate the water fluxes in the soil–plant–atmosphere continuum and the impact of vegetation on runoff generation in 2012. The elevation of the catchment ranges from 598 to 721 m a.s.l. and the climate is humid temperate. The bedrock consists of rhyolites and dacites; the soil is a Cambisol. The catchment is covered by a dense forest, dominated by beech, chestnut, maple, and hazel trees. The field set up includes measurements of the rainfall in an open area, streamflow at the outlet, soil moisture at various depths and locations, and depth to water table in six piezometers at a 5- or 10-min interval. Samples of precipitation, stream water, shallow groundwater and soil water are collected monthly for tracer analysis (stable isotopes (2H and 18O), electrical conductivity and major ions), and during selected rainfall–runoff events to determine the contribution of the various sources to runoff. Since 2017, soil and plant water samples have been collected to determine the sources of tree transpiration. Data collected in the period 2012–2016 are publicly available. Data collection is ongoing, and the data set is expected to be updated on an annual basis to include the most recent measurements.  相似文献   

17.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   

18.
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The hydrological behaviour of the cultivated Féfé catchment (17·8 ha) on the tropical volcanic island of Guadeloupe was studied to identify flow paths, to quantify water fluxes, and finally, to build a lumped model to simulate discharge and piezometer levels. The approach combined two steps, an experimental step and a modelling step, which covered two time scales, the annual and the storm event scale. The hydrological measurements were conducted over 2 years. The Féfé catchment is characterized by heavy rainfall (4229 mm year?1) on permeable Andosols; the results showed that underground flow paths involved two overlapping aquifers, and that the annual water balance in 2003 was shared among outflows of the deep aquifer (42%), evapotranspiration (31%), and streamflow (27%). On the event scale, the surface runoff coefficient ranges between 6·2% and 24·4% depending on antecedent dry or wet moisture conditions. Hortonian overland flow predominated over subsurface and saturation overland flow processes. Recharge of the shallow aquifer is mainly governed by a constant infiltration capacity of the Andosols with depth in the vadose zone. Outflows of this shallow aquifer were the baseflow of the main stream and the recharge of the deep aquifer. Volcanic deposits at Féfé promoted the underground flow path, and cultivated areas seemed to explain the high stormflow values relative to other tropical small catchments under rain forest. A conceptual lumped model integrating runoff, infiltration, evapotranspiration, and fluctuations of the two overlapping aquifers was developed. The model has six parameters and was calibrated and validated on the hydrograph at the outlet and on the two piezometers of the shallow and the deep aquifers. The results show fair to good agreement between measured and simulated variables, and consequently, the model was consistent with the main hydrological processes observed from experimental results in wet conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号