首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lahcen Zouhri 《水文研究》2010,24(10):1308-1317
An electrical prospecting survey is conducted in the Rharb basin, a semi‐arid region in the southern part of the Rifean Cordillera (Morocco) to delineate characteristics of the aquifer and the groundwater affected by the marine intrusion related to Atlantic Ocean. Analysis and interpretations of electrical soundings, bi‐logarithmic diagrams and the geoelectrical sections highlight a monolayer aquifer in the southern part, a multilayer system in the northern part of the Rharb basin and lenticular semi‐permeable formations. Several electrical layers have been deduced from the analysis of bi‐logarithmic diagrams: resistant superficial level (R0), conducting superficial level (C0), resistant level (R), intermediary resistant level (R′), conducting level (Cp) and intermediary layer of resistivity (AT). Spatial distribution of the resistivity deduced from the interpretation of apparent resistivity maps (AB = 400 and 1000 m) and the decreasing of resistivity values (35–10 Ωm), in particular in the coastal zone show that this heterogeneity is related to several anomalies identified in the coastal area, which result from hydraulic and geological processes: (i) heterogeneous hydraulic conductivity in particular in the southern part of the Rharb; (ii) lateral facies and synsedimentary faulting and (iii) the relationship between the electrical conductivity and chloride concentration of groundwater shows that salinity is the most important factor controlling resistivity. The distribution of fresh/salt‐water zones and their variations in space along geoelectrical sections are established through converting subsurface depth‐resistivity models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Abstract Geophysical results obtained in the Rharb basin, Morocco are reported. Correlations between hydrogeological well logs reveal several water-bearing Plio-Quaternary units resting on a substrate of blue marls. Geo-electrical borehole analyses were interpreted using bi-logarithmic diagrams which indicate the permeable layers of the aquifer and also its basement. Resistivity data from NE–SW and NW–SE electrical sections allow definition of the permeable/impermeable levels, and identification of ?ditches? that may be favourable sectors for hydrogeological exploitation. Resistivity anomalies were investigated by analysing maps of resistivity at 400 and 1000 m AB. Anomalies identified in the Rharb basin are related to the thickening of the permeable bodies (sand, limestone, sandstone deposits). In the coastal zone (AB = 1000 m), there is a strong decrease of the resistivity gradient (35–10 Ω m), which is probably linked to marine intrusion. Electrical anomalies allow detection of the water-bearing zones notably in the western and southwestern parts of the Rharb basin.  相似文献   

3.
Exposure from groundwater contamination to aquatic receptors residing in receiving surface water is dependent upon the rate of contaminated groundwater discharge. Characterization of groundwater fluxes is challenging, especially in coastal environments where tidal fluctuations result in transient groundwater flows towards these receptors. This can also be further complicated by the high spatial heterogeneity of subsurface deposits enhanced by anthropogenic influences such as the mixing of natural sediments and backfill materials, the presence of subsurface built structures such as sheet pile walls or even occurrence of other sources of contaminant discharge. In this study, the finite volume point dilution method (FVPDM) was successfully used to characterize highly transient groundwater flows and contaminant mass fluxes within a coastal groundwater flow system influenced by marked tides. FVPDM tests were undertaken continuously for more than 48 h at six groundwater monitoring wells, in order to evaluate groundwater flow dynamics during several tide cycles. Contaminant concentrations were measured simultaneously which allowed calculating contaminant mass fluxes. The study highlighted the importance of the aquifer heterogeneity, with groundwater fluxes ranging from 10−7 to 10−3 m/s. Groundwater flux monitoring enabled a significant refinement of the conceptual site model, including the fact that inversion of groundwater fluxes was not observed at high tide. Results indicated that contaminant mass fluxes were particularly higher at a specific monitoring well, by more than three orders of magnitude, than at other wells of the investigated aquifer. This study provided crucial information for optimizing further field investigations and risk mitigation measures.  相似文献   

4.
Fully implicit, fully coupled techniques are developed for simulating multiphase flow with nonequilibrium mass transfer between phases, with application to groundwater contaminant flow and transport. Numerical issues which are addressed include: use of MUSCL or Van Leer flux limiters to reduce numerical dispersion, use of full or approximate Jacobian for flux limiter methods, and variable substitution for increased Newton iteration efficiency. A comparison of the performance of equilibrium and nonequilibrium models is also presented.  相似文献   

5.
Surface water and groundwater in the Heihe river basin of China are interconnected and the pattern of water resources exploitation has a direct effect on the interaction of groundwater and surface water, especially on a downstream oasis. A three‐dimensional groundwater flow simulation model with eight model layers was established to simulate the regional groundwater flow in the multilayered aquifer system and the interaction among the rivers, springs, and groundwater. The model was calibrated not only with historical water levels but also with the investigated baseflow and spring flux. The simulation results of the numerical model match reasonably well with the observed groundwater levels, baseflow to rivers, and spring flux. The numerical simulation also demonstrates that the hydraulic connection between the river and the aquifers has transferred from the coupling to decoupling at some reaches. It is suggested that there is a vital need to reduce groundwater withdrawal and to rationalize the use of both groundwater and surface water in order to maintain sustainable development in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Variable spatial and temporal weighting of the advective contaminant mole fraction term is explored as a means of reducing numerical dispersion of contaminant plumes in a multi-phase compositional simulator. The spatial schemes considered are upstream, central and a non-linear flux limiter, while fully-implicit and Crank-Nicolson time weighting are examined. The performance of each weighting scheme, in terms of stability of the Newton iteration and computational cost, is assessed for simplified problems designed to be representative of various aspects of more complex subsurface remediation problems. Results indicate that for problems with an homogeneous permeability field, the non-linear flux limited along with fully-implicit weighting gives superior performance to any other combination of spatial and temporal weighting schemes. For heterogeneous permeability fields, the macrodispersion imparted by heterogeneity dominates numerical dispersion so that smearing of contaminant mole fraction fronts does not appear to be a serious problem.  相似文献   

7.
The shallow water equations are used to model flows in rivers and coastal areas, and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. These equations have still water steady state solutions in which the flux gradients are balanced by the source term. It is desirable to develop numerical methods which preserve exactly these steady state solutions. Another main difficulty usually arising from the simulation of dam breaks and flood waves flows is the appearance of dry areas where no water is present. If no special attention is paid, standard numerical methods may fail near dry/wet front and produce non-physical negative water height. A high-order accurate finite volume weighted essentially non-oscillatory (WENO) scheme is proposed in this paper to address these difficulties and to provide an efficient and robust method for solving the shallow water equations. A simple, easy-to-implement positivity-preserving limiter is introduced. One- and two-dimensional numerical examples are provided to verify the positivity-preserving property, well-balanced property, high-order accuracy, and good resolution for smooth and discontinuous solutions.  相似文献   

8.
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi‐steady‐state rise in the mean water‐table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed and this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water‐table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The potential for rising groundwater is an important consideration in any coastal resiliency assessment. Unlike other groundwater modeling that focuses mostly on contaminant tracking, coastal groundwater resiliency assessments are primarily concerned with the potential for groundwater emergence induced by sea level rise. This provides more options for modelers that range from simplified water table elevation models to fully integrated groundwater and storm water models. The selection is dependent on available data and project needs. However, despite the relative simplicity of some of the techniques, all the methods benefit from a professional with hydrogeological training.  相似文献   

10.
Measurement and interpretation of mass fluxes in favor of concentrations is gaining more and more interest, especially within the framework of the characterization and management of large-scale volatile organic carbon (VOC) groundwater contamination (source zones and plumes). Traditional methods of estimating contaminant fluxes and discharges involve individual measurements/calculations of the Darcy water flux and the contaminant concentrations. However, taken into account the spatially and temporally varying hydrologic conditions in complex, heterogeneous aquifers, higher uncertainty arises from such indirect estimation of contaminant fluxes. Therefore, the potential use of passive sampling devices for the direct measurement of groundwater-related VOC mass fluxes is examined. A review of current passive samplers for the measurement of organic contaminants in water yielded the selection of 18 samplers that were screened for a number of criteria. These criteria are related to the possible application of the sampler for the measurement of VOC mass fluxes in groundwater. This screening study indicates that direct measurement of VOC mass fluxes in groundwater is possible with very few passive samplers. Currently, the passive flux meter (PFM) is the only passive sampler which has proven to effectively measure mass fluxes in near source groundwater. A passive sampler for mass flux measurement in plume zones with regard to long-term monitoring (several months to a year) still needs to be developed or optimized. A passive sampler for long-term monitoring of contaminant mass fluxes in groundwater would be of considerable value in the development of risk-based assessment and management of soil and groundwater pollutions.  相似文献   

11.
Low-permeability layers of the vadose zone containing volatile organic compounds (VOCs) may persist as source zones for long time periods and may provide contamination to groundwater. At sites with low recharge rates, where vapor migration is the dominant transport process, the impact of vadose zone sources on groundwater may be difficult to assess. Typical assessment methods include one-dimensional numerical and analytical techniques. The one-dimensional approaches only consider groundwater coupling options through boundary conditions at the water table and may yield artificially high mass flux results when transport is assumed to occur by gas-phase diffusion between a source and an interface with a zero concentration boundary condition. Improvements in mass flux assessments for VOCs originating from vadose zone sources may be obtained by coupling vadose zone gas transport and dissolved contaminant transport in the saturated zone and by incorporating the inherent three-dimensional nature of gas-phase transport, including the potential of density-driven advection. This paper describes a series of three-dimensional simulations using data from the U.S. Department of Energy's Hanford site, where carbon tetrachloride is present in a low-permeability zone about 30 m above the groundwater. Results show that, for most cases, only a relatively small amount of the contaminant emanating from the source zone partitions into the groundwater and that density-driven advection is only important when relatively high source concentrations are considered.  相似文献   

12.
Herein, we present numerical analogs to traditional Fourier and dispersion analyses and validate them with well-characterized phase behavior for classic finite difference and finite element (FE) discretizations of the shallow water equations. Basically, the procedure is to introduce a single wave with known amplitude and phase into the domain, propagate the wave approximately one wavelength using some discretization scheme, and then note its final amplitude and phase. The final state of the wave is then compared with the expected wave form predicted by the continuum equations to determine the propagation behavior of the discretization. After validating the technique, we then examine two case studies: (1) slope limiting schemes within the finite volume framework and (2) lumping coefficients within the selective lumping FE framework. Of the three common slope limiters that we examined, the Superbee limiter has the most promising phase behavior, as it is the least dissipative while maintaining minimal phase error. Using our numerical technique, we were also able to verify the range of values that has been found to be most accurate in practice for the selective lumping coefficient.  相似文献   

13.
Low-permeability layer (LPL), formed by natural deposit or artificial reclamation and commonly found below the intertidal zone of coastal groundwater system, can retard the ingress of seawater and contaminants, and shorten the travel time of the land-sourced contaminant to the marine environment compared with a homogenous sandy coastal aquifer. However, there is limited understanding on how an intertidal LPL, a condition occurred in a coastal aquifer at Moreton Bay, Australia, influences the groundwater and contaminant transport across the shallow beach aquifer system. We characterized the aquifer hydrological parameters, monitored the in situ groundwater heads, and constructed a 2-D numerical model to analyses the cross-shore hydrological processes in this stratified system. The calibrated model suggests that in the lower aquifer, the inland-source fresh groundwater flowed horizontally towards the sea, upwelled along the freshwater–saltwater interface, and exited the aquifer at the shore below the LPL. Whereas in the upper aquifer, the tidally driven seawater circulation formed a barrier that prevented fresh groundwater from horizontal transport and discharge to the beach above the LPL, thereby directing its leakage to the lower aquifer. A contaminant represented by a conservative tracer was ‘released’ the upper aquifer in the model and results showed that the spreading extent of the contaminant plume, the maximum rate of contaminant discharge to the ocean, and its plume length decreased compared with a simulation case in a homogenous sandy aquifer. Sensitivity analysis was also conducted to investigate the characteristics of the LPL, including its continuity and hydraulic conductivity, which were found to vary along the beach at Moreton Bay. The result shows that with a lower hydraulic conductivity and continuous layer of LPL reduced the groundwater exchange and contaminant transport between upper and lower aquifer. The findings from the combined field and modelling investigations on the impact of an intertidal LPL on coastal aquifer systems highlight its significant implications to alter the groundwater and mass transport across the land–ocean interface.  相似文献   

14.
This work deals with a comparison of different numerical schemes for the simulation of contaminant transport in heterogeneous porous media. The numerical methods under consideration are Galerkin finite element (GFE), finite volume (FV), and mixed hybrid finite element (MHFE). Concerning the GFE we use linear and quadratic finite elements with and without upwind stabilization. Besides the classical MHFE a new and an upwind scheme are tested. We consider higher order finite volume schemes as well as two time discretization methods: backward Euler (BE) and the second order backward differentiation formula BDF (2). It is well known that numerical (or artificial) diffusion may cause large errors. Moreover, when the Péclet number is large, a numerical code without some stabilising techniques produces oscillating solutions. Upwind schemes increase the stability but show more numerical diffusion. In this paper we quantify the numerical diffusion for the different discretization schemes and its dependency on the Péclet number. We consider an academic example and a realistic simulation of solute transport in heterogeneous aquifer. In the latter case, the stochastic estimates used as reference were obtained with global random walk (GRW) simulations, free of numerical diffusion. The results presented can be used by researchers to test their numerical schemes and stabilization techniques for simulation of contaminant transport in groundwater.  相似文献   

15.
The Motooka region in the Fukuoka prefecture in western Japan is a coastal area, where groundwater is utilized as the main water resource for greenhouse agriculture and domestic use. Over-exploitation of groundwater has resulted in seawater intrusion and thus in the contamination of the freshwater aquifer. Fluctuations in electric conductivities caused by such intrusion are a crucial problem, since even slight changes in electric conductivities of the water used for agricultural purposes significantly affect the crops’ growth and yield. However, no study has thus far been conducted on the electric conductivity fluctuations caused by groundwater pumping and seasonal recharge of groundwater in the Motooka region. To this end, an attempt is made in the present study to develop a numerical variable-density solute transport model and then apply it to simulate the electric conductivity fluctuations with groundwater pumping and rainwater recharge. This model is developed under a finite difference scheme, and the method of characteristics is used as the numerical technique for solving the advection term of the advection–dispersion solute transport equation. The results from this numerical model are compared with the field measurements.  相似文献   

16.
Shallow water equations with a non-flat bottom topography have been widely used to model flows in rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas where no water is present, as standard numerical methods may fail in the presence of these areas. These equations also have still water steady state solutions in which the flux gradients are nonzero but exactly balanced by the source term. In this paper we propose a high order discontinuous Galerkin method which can maintain the still water steady state exactly, and at the same time can preserve the non-negativity of the water height without loss of mass conservation. A simple positivity-preserving limiter, valid under suitable CFL condition, will be introduced in one dimension and then extended to two dimensions with rectangular meshes. Numerical tests are performed to verify the positivity-preserving property, well-balanced property, high order accuracy, and good resolution for smooth and discontinuous solutions.  相似文献   

17.
Accurate characterization of heterogeneity in groundwater basins is crucial to the sustainable management of groundwater resources. This study explores the temporal sampling issues and the role of flux measurements in the characterization of heterogeneity in groundwater basins using numerical experiments. The experiments involve a digital basin imitating the groundwater basin of the North China Plain (NCP), where the groundwater exploitation reduction program is ongoing. Using the experiments, we champion that the reduction program could collect groundwater level information induced by operational variations of existing pumping wells at different locations in the basin. Such a dataset could serve as a basin-scale hydraulic tomography (HT) to characterize the basin-scale heterogeneity cost-effectively. Both steady-state and transient-state inversion experiments demonstrate the advantage of HT surveys in characterizing basin-scale heterogeneity over conventional pumping tests at fixed well locations. Additionally, head data at the early, intermediate, and late time from well hydrographs should be selected for the HT analysis to maximize HT's power and save computational costs. When accurate geological zones are incorporated in prior information, flux measurements significantly improve parameter estimates based on conventional pumping tests. However, their effects are less noticeable for long-term HT surveys in such basin-scale aquifers without fissures or fractures. This basin-scale tomographic survey example serves a guide for field data collection and optimization of the analysis of future basin-scale HT.  相似文献   

18.
We completed a two‐step regional analysis of a coastal groundwater basin to (1) assess regional suitability for managed aquifer recharge (MAR), and (2) quantify the relative impact of MAR activities on groundwater levels and sea water intrusion. The first step comprised an analysis of surface and subsurface hydrologic properties and conditions, using a geographic information system (GIS). Surface and subsurface data coverages were compiled, georeferenced, reclassified, and integrated (including novel approaches for combining related datasets) to derive a spatial distribution of MAR suitability values. In the second step, results from the GIS analysis were used with a regional groundwater model to assess the hydrologic impact of potential MAR placement and operating scenarios. For the region evaluated in this study, the Pajaro Valley Groundwater Basin, California, GIS results suggest that about 7% (15 km2) of the basin may be highly suitable for MAR. Modeling suggests that simulated MAR projects placed near the coast help to reduce sea water intrusion more rapidly, but these projects also result in increased groundwater flows to the ocean. In contrast, projects placed farther inland result in more long‐term reduction in sea water intrusion and less groundwater flowing to the ocean. This work shows how combined GIS analysis and modeling can assist with regional water supply planning, including evaluation of options for enhancing groundwater resources.  相似文献   

19.
The passive flux meter (PFM) is a permeable down-hole device designed to measure the magnitudes of horizontal groundwater specific discharge and contaminant mass flux in porous media. By means of a geometrical analysis of resident tracer transport inside a PFM, this paper introduces two new PFM designs capable of measuring both the direction and magnitude of horizontal water and contaminant fluxes. One design relies on the detection of a single resident tracer over multiple domains within the PFM cross section to determine the magnitude and direction of water flux. The second PFM configuration uses the detected loss of multiple resident tracers in different sectors of the PFM cross section to generate the same characterization of water flux. Both designs rely on the assumption of linear, instantaneous and reversible tracer sorption.  相似文献   

20.
Seawater intrusion into fresh groundwater formations generally results inadvertently from human activities, such as over‐abstraction from coastal aquifers. This article describes the data analysis to quantify drain–aquifer interactions in a low‐lying pump‐drained coastal aquifer, which is subject to saline intrusion due to widespread land drainage, and the resulting development and application of a numerical groundwater model to understand the spatial groundwater system behaviour (including groundwater salinity fluxes). Without measured flow data in this pump‐drained catchment, a novel groundwater head‐dependent approach to hydrograph separation is described. Time‐variant and time‐invariant MODFLOW analyses are utilised to examine the flow processes. A new approach to calculate drain coefficients, which represent the extensive network of drainage ditches in the regional model, using field information, is described; the sum of the drainage coefficients are close to the values independently estimated from the head‐dependent hydrograph separation. Results show that (1) the groundwater flows into the drainage systems are well reproduced using the new drain coefficients, (2) particle tracking of fresh and saline water can explain observed spatial salinity distribution within drainage networks and (3) the modelled flow of seawater across the coast is approximately 25% greater than that discharged by the pumps, demonstrating the need for drainage management to be aware of the slow response of groundwater systems to past drainage system changes. The article demonstrates that numerical groundwater modelling can produce the improved understanding needed to inform management decisions in such complex environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号