首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
River basins in south‐western USA are some of the most extensively studied arid land fluvial systems in the world. Since the early 1960s their hydro‐climatic histories have been reconstructed from the analysis of alluvial cut‐and‐fill cycles, while from the late 1970s there have been investigations of slackwater deposits and palaeostage indicators for large floods in stable‐boundary bedrock reaches. However, no studies have regionally integrated Holocene fluvial histories from these two different types of fluvial environments. The current study combines the alluvial archive with flood records from bedrock reaches to generate a probability‐based 12,000 year record of flooding in south‐western USA. Using more than 700 14C‐dated fluvial units, the analysis produces a high resolution (centennial) flood record. Seven episodes of increased flooding occurred at 11,250–10,400, 8800–8350, 8230–7600, 6700–5700, 5600–4820, 4550–3320 and 2000–0 cal. BP. Bedrock reaches are found to record more frequent floods during the middle to late Holocene, while in alluvial rivers more flood units are dated to the early and middle Holocene. These differences are primarily the result of selective preservation with alluvial reaches tending to erode during periods characterised by very large floods. Episodes of major Holocene flooding recorded in slackwater deposits within bedrock systems correspond with periods of increased precipitation in the region and lower temperatures. In contrast, within alluvial rivers above‐average flooding probabilities, as well as regionally extensive channel entrenchment episodes, match with reduced annual precipitation and lower temperatures. The results of this study clearly demonstrate the value of the Holocene fluvial archive for reconstructing regional, short‐term hydro‐climatic change in south‐western USA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Knut  Kaiser  Zhongping  Lai  Birgit  Schneider  Werner H.  Schoch  Xuhui  Shen  Georg  Miehe  Helmut  Brückner 《Island Arc》2009,18(3):404-427
Abstract The Tibetan Plateau is highly sensitive to environmental changes and affects the settings of a far larger territory in Central Asia and beyond. Thus, knowledge on past environmental changes in that area is essential. Even though the Kyichu (Lhasa River) Valley and its tributaries is an easily accessible area, the Late Quaternary landscape evolution of southern Tibet is in general scarcely known. Therefore, 12 sedimentary sections in the middle and lower catchment were subjected to multidisciplinary analyses (sedimentology, paleopedology, AMS 14C and luminescence dating, and charcoal determination) aiming at results on regional paleoenvironmental changes. At the altitude studied (3600–4000 m above sealevel), no glacial relics could be detected, indicating that the valley positions have been unglaciated since the Last Interglacial. The lack of fluvial–lacustrine structures above the floodplain is due to the aggradational character of this tectonically (sub‐)active valley, which caused an alluvial burying of older valley bottoms. During the Late Pleistocene the mouth area of the Kyichu was occupied by a lake which was part of a larger dam‐lake in the superordinate Yarlung Zhangbo Valley. On the valley flanks, loesses were predominantly deposited before the Last Glacial Maximum (LGM), whereas eolian sands were predominantly deposited around and after the LGM. Paleosols of Last Interglacial, Last Glacial and Holocene ages regularly occur at terrestrial sites representing temperate to cool and humid to semiarid conditions during soil formation. Ages of colluvial sediments indicate that the widespread barren valley slopes were primarily formed by Late Pleistocene erosion followed by a secondary Holocene erosion phase. Charcoal spectra indicate a Late Holocene change from a forest environment to a pastoral environment with sparse grasses, herbs and dwarf shrubs. It is assumed that the Late Holocene environmental changes, such as loss of forests/woodlands and erosion, have at least been reinforced by humans, enhancing a regional climatic aridification and cooling trend.  相似文献   

3.
Terrestrial cosmogenic nuclides (TCN) have widely been used as proxies in determining denudation rates in catchments. Most studies were limited to samples from modern active streams, thus little is known about the magnitude and causes of TCN variability on millennial time scales. In this work we present a 6 kyrs long, high resolution record of 10Be concentrations (n = 18), which were measured in sediment cores from an alluvial fan delta at the outlet of the Fedoz Valley in the Swiss Alps. This record is paired with a 3‐year time series (n = 4) of 10Be measured in sediment from the active stream currently feeding this fan delta. The temporal trend in the 10Be concentrations after correction for postdepositional production of 10Be was found to be overall constant and in good agreement with the modern river 10Be concentration. The calculated mean catchment‐wide denudation rate amounts to 0.73 ± 0.18 mm yr?1. This fairly constant level of 10Be concentrations can be caused by a constant denudation rate over time within the catchment or alternatively by a buffered signal. In this contribution we suggest that the large alluvial floodplain in the Fedoz Valley may act as an efficient buffer on Holocene time scales in which sediments with different 10Be signatures are mixed. Therefore, presumable variations in the 10Be signals derived from changes in denudation under a fluctuating Holocene climate are only poorly transferred to the catchment outlet and not recorded in the 10Be record. However, despite the absence of high frequency signals, we propose that the buffered and averaged 10Be signal could be meaningfully and faithfully interpreted in terms of long‐term catchment‐averaged denudation rate. Our study suggests that alluvial buffers play an important role in regulating the 10Be signal exported by some alpine settings that needs to be taken into account and further investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Determining sediment transfer times is key to understanding source-to-sink dynamics and the transmission of environmental signals through the fluvial system. Previous work on the Bolivian Altiplano applied the in situ cosmogenic 14C-10Be-chronometer to river sands and proposed sediment storage times of ~10–20 kyr in four catchments southeast of Lake Titicaca. However, the fidelity of those results hinges upon isotopic steady-state within sediment supplied from the source area. With the aim of independently quantifying sediment storage times and testing the 14C-10Be steady-state assumption, we dated sediment storage units within one of the previously investigated catchments using radiocarbon dating, cosmogenic 10Be-26Al isochron burial dating, and 10Be-26Al depth-profile dating. Palaeosurfaces appear to preserve remnants of a former fluvial system, which has undergone drainage reversal, reduction in catchment area, and local isostatic uplift since ~2.8 Ma. From alluvium mantling the palaeosurfaces we gained a deposition age of ~580 ka, while lower down fluvial terraces yielded ≤34 ka, and floodplains ~3–1 ka. Owing to restricted channel connectivity with the terraces and palaeosurfaces, the main source of channel sediment is via reworking of the late Holocene floodplain. Yet modelling a set of feasible scenarios reveals that floodplain storage and burial depth are incompatible with the 14C-10Be disequilibrium measured in the channel. Instead we propose that the 14C-10Be offset results from: (i) non-uniform erosion whereby deep gullies supply hillslope-derived debris; and/or (ii) holocene landscape transience associated with climate or human impact. The reliability of the 14C-10Be chronometer vitally depends upon careful evaluation of sources of isotopic disequilibrium in a wide range of depositional and erosional landforms in the landscape. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
The general role of river water input in shaping the basic morphometric parameters of floodplain lakes has been previously investigated. However, the process has not been quantitatively described in detail. This study is the first attempt in the literature to determine the allometric relation between fluvial impulse, expressed as Fluvial Connectivity Quotient, and morphometric parameters of six floodplain lakes of Bug River valley in the period 1952–2014. This relationship is given by Y = aXb, from which the value of b exponent was analysed to determine the strength of the allometric relation. Extreme values of allometric compounds during the time period under study ranged from 5.99 to ?4.91. Volume was the morphometric parameter showing the highest variability in all the lakes. General similarity in allometric relations was observed in the lakes under study. During analysis, no long‐term trends were observed in the relationship between the Fluvial Connectivity Quotient and morphometric parameters. The results obtained show that fluvial impulse was the factor determining the variability of morphometric parameters of the lakes. Direct catchments topography of lake has periodically (during limnophase periods) played a significant role in shaping the morphometry of floodplain lakes. The most stable allometric relations occurred in a confluent lake, with a low limnological effective rise value and consequently, relatively long potamophase periods.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Factors influencing sediment transport and storage within the 156·6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11 000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a ‘quaternary terrace a (Qta)’ PRC terrace/PRC‐tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene‐Holocene transition caused intense debris‐flow erosion of PRC‐tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary‐valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene‐Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene‐Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene‐Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream‐capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley‐Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly interpret terrestrial sedimentary sequences in tectonically active areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A combination of archaeological evidence, 14C dates, terrace mapping, heavy metal analysis, grain size analysis and historical maps is used in a detailed analysis of the alluvial history of the River Severn floodplain around Welshpool in mid-Wales, U.K. ‘Welshpool Gravels’ underlie a higher terrace surface up to 6–7 m above the present channel. They form a sequence of gravels at least 30 m in thickness. The upper surface is characterized by a series of braided palaeochannel patterns. These sediments were probably deposited at the end of the last glaciation as outwash, and are contemporaneous with other high, gravelly terrace deposits found in the Severn and other mid-Wales basins. Overlying the Welshpool Gravels on the contemporary floodplain are a variable thickness of finer sediments, the ‘Leighton Silts’. Morphological mapping and dating of two cut-offs to 2850 ± 60 a BP and 1190 ± 70 a BP indicates that a channel pattern similar to the present planform had formed by the mid to late Holocene. From this period, floodplain development has been dominated by a single-thread meandering channel with fine vertical sedimentation and limited lateral gravel accretion. Abandonment of extended lengths of channel formed by an avulsion mechanism is apparent. A combination of historical map data, 14C dates and the analysis for heavy metals in fine sediments, which were washed into the river system during mining, indicates that there has been at least 4 m of sedimentation since the early 17th century, but only in a central belt of varying width. Metal-rich waste, identified in the fine sediments of this zone of ‘Trehelig Silts’, indicates those areas which were most heavily sedimented during the peak of metalliferous mining in the 18th and 19th centuries. Although the near-channel margins appear to be superficially similar to the older floodplain, the spatial and vertical pattern of historic sedimentation is complex, and is not reflected in marked elevation differences. The division of sedimentation periods into these three broad time-spans (Late Quaternary Terraces, Late Holocene alluviation and avulsion, and the historical metal-mining period) shows that an apparently simple planar floodplain is in reality underlain by complex sedimentation units. Floodplain construction has involved the development of inset units, in cut-offs and adjacent to migrating channels, as well as the expected contrasts between in-channel and overbank environments. This has implications both for alluvial sedimentation modelling and for the identification of high-pollution zones on the floodplain. These cannot be predicted on the basis of simple ‘in-channel’ and ‘overbank’ environments given the historically complex evolution.  相似文献   

8.
The sediment stratigraphy of a 4 m thick intercalated Holocene alluvial fill and valley floor peat at a site in the Milfield Basin, Northumberland, has been dated by a series of eight 14C assays, and related to a previously analysed pollen record. The sequence extends from the earliest Holocene until c. 2800 cal. BP . Prior to the onset of peat inception, substantial amounts of channel-trenching can be demonstrated to have occurred in the Milfield Basin during the Loch Lomond Stadial. There is no measurable early Holocene accelerated fluvial activity, but a major flooding event occurred at c. 7500 cal. BP , much earlier than recorded elsewhere in the region. The explanation for this is not clear. However, the cessation of mid-Holocene overbank sedimentation at c. 4000–3500 cal. BP is tentatively correlated with slope stability associated with woodland regeneration. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Cosmogenic 26Al, 10Be, and 14C dating of fluvial fill terraces in steep canyons of the Colorado Front Range provides a temporal framework for analysing episodic aggradation and incision. Results from Boulder Canyon show that terrace heights above the modern channel (grade) can be divided into: (1) Bull Lake (≳100 ka; 20–15 m above grade); (2) Pinedale (32–10 ka; 15–4 m above grade); and (3) Holocene age (<4 m above grade). No pre‐Bull Lake deposits are preserved along Boulder Canyon, and only three small remnants >15 m above grade record Bull Lake deposition. Well‐preserved terraces of Pinedale age suggest that the range of terrace height above grade reflects short‐term fluctuations in the river profile during periods of rapidly changing stream load and power. Net river incision apparently occurred during transitions to interglacial periods. Soil development and stratigraphic position, along with limited cosmogenic and 14C dating, suggest that ∼130 ka terraces in Boulder Canyon correlate with the Louviers Alluvium, and that 32 to 10 ka fills in the canyon correlate with the Broadway Alluvium on the adjacent High Plains. Late Pleistocene incision rates (∼0·15 m ka−1) along Boulder Canyon exceed pre‐late Pleistocene incision rates, and are higher than middle to late Pleistocene incision rates (∼0·04 m ka−1) on the High Plains. This study provides an example of how modern geochronologic techniques allow us to understand better rivers that drain glaciated catchments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene‐Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193 ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4–3) at a mean accumulation rate of 0·22 m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4–2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24 m/ka. This co‐accumulation indicates that gullies have been a long‐term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2 m/ka near the hills to 1–0·4 m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man‐made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Variation in fluvial landforms and associated vegetation in the headward (upstream) direction has received little study and the controlling factors are not well understood. The relations among channel gradient, basin area, stream order, and the headward extent of fluvial landforms and vegetation was studied in 18 small basins and larger nearby stream reaches in the Massanutten Mountain area, northern Shenandoah Valley, Virginia. Low-order streams were traversed to their basin heads. Notice was made of the point or region of the disappearance of fluvial landforms. Indicator species were used to confirm landform identification. The studied landforms include the channel bar, channel shelf, floodplain, and terraces. Basin geomorphic characteristics were determined from topographic and geologic maps and ground surveys. Results suggest that gradient is the most important factor controlling the development of fluvial landforms. Floodplains have not developed along stream reaches where average channel gradients exceed 0.15. Channel shelves and associated vegetation occur farther upstream than floodplains.  相似文献   

14.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between -1.4 (+0.36/-2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater-tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Although in-channel and floodplain large wood (LW) has been recognized as an important component of lotic ecosystems, there is still limited knowledge on the recruitment, mobility and retention of LW in rivers with an intermittent hydrological regime. In this study, we analysed the LW characteristics and related reach-scale variables of 22 reaches in a Mediterranean intermittent river (Evrotas, Greece) in order to identify predictors of in-channel and floodplain LW distribution. Our results indicated high downstream variation in LW volumes in the fluvial corridor (0.05–25.51 m3/ha for in-channel LW and 0–30.88 m3/ha for floodplain LW). In-channel and floodplain LW retention was primarily driven by the hydrological regime of the studied reaches (i.e. perennial or non-perennial) with higher volumes of LW observed in perennial sections. The width of the riparian corridor was an important predictor of LW storage at the reach scale. Non-perennial reaches had a disproportionally larger number of relatively small-diameter living trees at the expense of mature trees with larger diameters typical for riparian stands functioning as LW recruitment areas in perennial reaches. The smaller dimensions of in-channel LW in non-perennial reaches, coupled with the dominance of loose LW pieces, implies frequent LW transport during ordinary flood events. Nevertheless, overall low LW retention in the fluvial corridor under non-perennial flow regime predicts low volumes of mobilized LW. In contrast, the recruitment of relatively long and large-diameter LW from mature riparian stands in perennial reaches, together with additional LW stabilization by banks, bed sediments, living trees or other LW pieces decreases the potential for further LW transport. © 2020 John Wiley & Sons, Ltd.  相似文献   

17.
The study investigates interactions, water and sediment exchanges, between a rapidly migrating meander and its associated floodplain at fine temporal and spatial scales. The Beni River, an Amazonian free meandering river, makes the transition between Andean ranges and Amazonian lowlands. For the period 2002–2006, an assemblage of tools and methods (water and sediment discharges, topometric and bathymetric surveys, sedimentation rate estimations from unsupported 210Pb and sediment trapping system) was used to jointly analyse the influence on the sediment budget of external factors (mainly water and sediment discharge) and the inherent behaviour of the system. The main issue addressed is the investigation of the complex relationship between ‘morphological conditioning’ of fluvial landform and process. The first part of the study was undertaken with the aim of linking erosion–deposition in an active meander with water and sediment fluxes. The three inter‐annual evolutions are characterized by very unequal sediment budgets; the first two intervals underwent predominant erosion, and the latter slight accumulation. Digital elevation models, evaluated for the active meander, demonstrate that sedimentation on the point bar depends more on external factors than erosion of the concave bank, which fluctuates slightly. The second part of the study, focusing on water and sediment exchanges between active bend and floodplain, examines the respective parts played by overbank flow and by an abandoned channel on the diffusion and sequestration of sediment. The association of short‐ and long‐term estimation of sedimentation rates suggests that floodplain construction is associated with two different processes and rhythms of sediment transportation. Finally, a sediment budget is proposed for the Beni River in the upper part of the Amazonian lowlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
After wildfire, hillslope and channel erosion produce large amounts of sediment and can contribute significantly to long-term erosion rates. However, pre-erosion high-resolution topographic data (e.g. lidar) is often not available and determining specific contributions from post-fire hillslope and channel erosion is challenging. The impact of post-fire erosion on landscape evolution is demonstrated with Structure from Motion (SfM) Multi-View Stereo (MVS) photogrammetry in a 1 km2 Idaho Batholith catchment burned in the 2016 Pioneer Fire. We use SfM-MVS to quantify post-fire erosion without detailed pre-erosion topography and hillslope transects to improve estimates of rill erosion at adequate spatial scales. Widespread rilling and channel erosion produced a runoff-generated debris-flow following modest precipitation in October 2016. We implemented unmanned aerial vehicle (UAV)-based SfM-MVS to derive a 5 cm resolution digital elevation model (DEM) of the channel scoured by debris-flow. In the absence of cm-resolution pre-erosion topography, a synthetic surface was defined by the debris-flow scour's geomorphic signature and we used a DEM of Difference (DoD) to map and quantify channel erosion. We found 3467 ± 422 m3 was eroded by debris-flow scour. Rill dimensions along hillslope transects and Monte Carlo simulation show rilling eroded ~1100 m3 of sediment and define a volume uncertainty of 29%. The total eroded volume (4600 ± 740 m3) we measured in our study catchment is partitioned into 75% channel erosion and 25% rill erosion, reinforcing the importance of catchment size on erosion process-dominance. The deposit volume from the 2016 event was 5700 ± 1140 m3, indicating ~60% contribution from post-fire channel erosion. Dating of charcoal fragments preserved in stratigraphy at the catchment outlet, and reconstructions of prior deposit volumes provide a record of Holocene fire-related debris-flows at this site; results suggest that episodic wildfire-driven erosion (~6 mm/year) dominate millennial-scale erosion (~5 mm/Ka) at this site. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
This study provides data on the fluvial sediment transport at the Eastern Mediterranean, an area in which the regional importance for comparative study has often been raised by investigators but the data are rather scarce. We analysed long‐ and short‐term hydrologic and sedimentological data from one of the largest coastal streams of Israel, Qishon River (1100 km2), and its estuarine environment. The results indicate that during 65 years (1944–2009), a total 140 floods have contributed to the sea an amount of approximately 2.58 × 106 tons of sediment. During this period, (i) the number of floods with a return period of more than 10 years has almost doubled during the last 30 years, and (ii) the mean annual discharge during last 10 years increased by approximately 175%. The analysis of the short (2 years) hydrological and sediment data revealed that approximately 30% of the upstream channel loads do not reach the river mouth and are deposited along the channel bed, even during major flood events. This observation was attributed largely to the facts that the lower river bed is incised below sea level, to the very low slopes and to the correspondingly low stream power and transport capacity. The results of this study highlight the effect of interchannel dynamics as well as the constraints of interaction between fluvial system and estuarine processes on sediment transport. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Low‐energy streams in peatlands often have a high sinuosity. However, it is unknown how this sinuous planform formed, since lateral migration of the channel is hindered by relatively erosion‐resistant banks. We present a conceptual model of Holocene morphodynamic evolution of a stream in a peat‐filled valley, based on a palaeohydrological reconstruction. Coring, ground‐penetrating radar (GPR) data, and 14C and OSL dating were used for the reconstruction. We found that the stream planform is partly inherited from the Late‐Glacial topography, reflecting stream morphology prior to peat growth in the valley. Most importantly, we show that aggrading streams in a peat‐filled valley combine vertical aggradation with lateral displacement caused by attraction to the sandy valley sides, which are more erodible than the co‐evally aggrading valley‐fill. Owing to this oblique aggradation in combination with floodplain widening, the stream becomes stretched out as channel reaches may alternately aggrade along opposed valley sides, resulting in increased sinuosity over time. Hence, highly sinuous planforms can form in peat‐filled valleys without the traditional morphodynamics of alluvial bed lateral migration. Improved understanding of the evolution of streams provides inspiration for stream restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号