首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
S. Riad  J. Mania  L. Bouchaou  Y. Najjar 《水文研究》2004,18(13):2387-2393
A model of rainfall–runoff relationships is an essential tool in the process of evaluation of water resources projects. In this paper, we applied an artificial neural network (ANN) based model for flow prediction using the data for a catchment in a semi‐arid region in Morocco. Use of this method for non‐linear modelling has been demonstrated in several scientific fields such as biology, geology, chemistry and physics. The performance of the developed neural network‐based model was compared against multiple linear regression‐based model using the same observed data. It was found that the neural network model consistently gives superior predictions. Based on the results of this study, artificial neural network modelling appears to be a promising technique for the prediction of flow for catchments in semi‐arid regions. Accordingly, the neural network method can be applied to various hydrological systems where other models may be inappropriate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper evaluates the Integrated BIosphere Simulator (IBIS) land surface model using daily soil moisture data over a 3‐year period (2005–2007) at a semi‐arid site in southeastern Australia, the Stanley catchment, using the Monte Carlo generalized likelihood uncertainty estimation (GLUE) approach. The model was satisfactorily calibrated for both the surface 30 cm and full profile 90 cm. However, full‐profile calibration was not as good as that for the surface, which results from some deficiencies in the evapotranspiration component in IBIS. Relatively small differences in simulated soil moisture were associated with large discrepancies in the predictions of surface runoff, drainage and evapotranspiration. We conclude that while land surface schemes may be effective at simulating heat fluxes, they may be ineffective for prediction of hydrology unless the soil moisture is accurately estimated. Sensitivity analyses indicated that the soil moisture simulations were most sensitive to soil parameters, and the wilting point was the most identifiable parameter. Significant interactions existed between three soils parameters: porosity, saturated hydraulic conductivity and Campbell ‘b’ exponent, so they could not be identified independent of each other. There were no significant differences in parameter sensitivity and interaction for different hydroclimatic years. Even though the data record contained a very dry year and another year with a very large rainfall event, this indicated that the soil model could be calibrated without the data needing to explore the extreme range of dry and wet conditions. IBIS was much less sensitive to vegetation parameters. The leaf area index (LAI) could affect the mean of daily soil moisture time series when LAI < 1, while the variance of the soil moisture time series was sensitive to LAI > 1. IBIS was insensitive to the Jackson rooting parameter, suggesting that the effect of the rooting depth distribution on predictions of hydrology was insignificant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Chemical hydrograph separation using electrical conductivity and digital filters is applied to quantify runoff components in the 1,640 km2 semi‐arid Kaap River catchment and its subcatchments in South Africa. A rich data set of weekly to monthly water quality data ranging from 1978 to 2012 (450 to 940 samples per site) was analysed at 4 sampling locations in the catchment. The data were routinely collected by South Africa's national Department of Water and Sanitation, using standard sampling procedures. Chemical hydrograph separation using electrical conductivity (EC) as a tracer was used as reference and a recursive digital filter was then calibrated for the catchment. Results of the two‐component hydrograph separation indicate the dominance of baseflow in the low flow regime, with a contribution of about 90% of total flow; however, during the wet season, baseflow accounts for 50% of total flow. The digital filter parameters were very sensitive and required calibration, using chemical hydrograph separation as a reference. Calibrated baseflow estimates ranged from 40% of total flow at the catchment outlet to 70% in the tributaries. The study demonstrates that routinely monitored water quality data, especially EC, can be used as a meaningful tracer, which could also aid in the calibration of a digital filter method and reduce uncertainty of estimated flow components. This information enhances our understanding of how baseflow is generated and contributed to streamflow throughout the year, which can aid in quantification of environmental flows, as well as to better parameterize hydrological models used for water resources planning and management. Baseflow estimates can also be useful for groundwater and water quality management.  相似文献   

10.
A. Montenegro  R. Ragab 《水文研究》2010,24(19):2705-2723
Brazilian semi‐arid regions are characterized by water scarcity, vulnerability to desertification, and climate variability. The investigation of hydrological processes in this region is of major interest not only for water planning strategies but also to address the possible impact of future climate and land‐use changes on water resources. A hydrological distributed catchment‐scale model (DiCaSM) has been applied to simulate hydrological processes in a small representative catchment of the Brazilian northeast semi‐arid region, and also to investigate the impact of climate and land‐use changes, as well as changes associated with biofuel/energy crops production. The catchment is part of the Brazilian network for semi‐arid hydrology, established by the Brazilian Federal Government. Estimating and modelling streamflow (STF) and recharge in semi‐arid areas is a challenging task, mainly because of limitation in in situ measurements, and also due to the local nature of some processes. Direct recharge measurements are very difficult in semi‐arid catchments and contain a high level of uncertainty. The latter is usually addressed by short‐ and long‐time‐scale calibration and validation at catchment scale, as well as by examining the model sensitivity to the physical parameters responsible for the recharge. The DiCaSM model was run from 2000 to 2008, and streamflow was successfully simulated, with a Nash–Sutcliffe (NS) efficiency coefficient of 0·73, and R2 of 0·79. On the basis of a range of climate change scenarios for the region, the DiCaSM model forecasted a reduction by 35%, 68%, and 77%, in groundwater recharge (GWR), and by 34%, 65%, and 72%, in streamflow, for the time spans 2010–2039, 2040–2069, and 2070–2099, respectively, could take place for a dry future climate scenario. These reductions would produce severe impact on water availability in the region. Introducing castor beans to the catchment would increase the GWR and streamflow, mainly if the caatinga areas would be converted into castor beans production. Changing an area of 1000 ha from caatinga to castor beans would increase the GWR by 46% and streamflow by 3%. If the same area of pasture is converted into castor beans, there would be an increase in GWR and streamflow by 24% and 5%, respectively. Such results are expected to contribute towards environmental policies for north‐east Brazil (NEB), and to biofuel production perspectives in the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Evaluating performances of four commonly used evaporation estimate methods, namely; Bowen ratio energy balance (BREB), mass transfer (MT), Priestley–Taylor (PT) and pan evaporation (PE), based on 4 years experimental data, the most effective and the reliable evaporation estimates model for the semi‐arid region of India has been derived. The various goodness‐of‐fit measures, such as; coefficient of determination (R2), index of agreement (D), root mean square error (RMSE), and relative bias (RB) have been chosen for the performance evaluation. Of these models, the PT model has been found most promising when the Bowen ratio, β is known a priori, and based on its limited data requirement. The responses of the BREB, the PT, and the PE models were found comparable to each other, while the response of the MT model differed to match with the responses of the other three models. The coefficients, β of the BREB, µ of the MT, α of the PT and KP of the PE model were estimated as 0·07, 2·35, 1·31 and 0·65, respectively. The PT model can successfully be extended for free water surface evaporation estimates in semi‐arid India. A linear regression model depicting relationship between daily air and water temperature has been developed using the observed water temperatures and the corresponding air temperatures. The model helped to generate unrecorded water temperatures for the corresponding ambient air temperatures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Spatially distributed groundwater recharge was simulated for a segment of a semi‐arid valley using three different treatments of meteorological input data and potential evapotranspiration (PET). For the same area, timeframe, land cover characteristics and soil properties, groundwater recharge was estimate using (i) single‐station climate data with monthly PET calculated by the Thornthwaite method; (ii) single‐station climate data with daily PET calculated by the Penman–Monteith method; and (iii) daily gridded climate data with spatially distributed PET calculated using the Penman–Monteith method. For each treatment, the magnitude and distribution of actual evapotranspiration (AET) for summer months compared well with those estimated for a 5‐year crop study, suggesting that the near‐surface hydrological processes were replicated and that subsequent groundwater recharge rates are realistic. However, for winter months, calculated AET was near zero when using the Thornthwaite PET method. Mean annual groundwater recharge varied from ~3·2 to 10·0 mm when PET was calculated by the Thornthwaite method, and from ~1·8 to 7·5 mm when PET was calculated by the Penman–Monteith method. Comparisons of bivariate plots of seasonal recharge rates estimated from single‐station versus gridded surface climate reveal that there is greater variability between the different methods for spring months, which is the season of greatest recharge. Furthermore, these seasonal differences are shown to provide different results when compared to the depth to water table, which could lead to different results of evaporative extinction depth. These findings illustrate potential consequences of using different approaches for representing spatial meteorological input data, which could provide conflicting predictions when modelling the influence of climate change on groundwater recharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The antecedent soil moisture status of a catchment is an important factor in hydrological modelling. Traditional Hortonian infiltration models assume that the initial moisture content is constant across the whole catchment, despite the fact that even in small catchments antecedent soil moisture exhibits tremendous spatial heterogeneity. Spatial patterns of soil water distribution across three transects (two in a burnt area and one in an unburnt area) in a semi‐arid area were studied. At the transect scale, when the factors affecting soil moisture were limited to topographical position or local topography, spatial patterns showed time stability, but when other factors, such as vegetation, were taken into account, the spatial patterns became time unstable. At the point scale, and in the same areas, topographical position was the main factor controlling time stability. Scale dependence of time stability was studied and local topography and vegetation presence were observed to play an important role for the correlation between consecutive measures depending on the scale. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Understanding and representing hydrologic fluxes in the urban environment is challenging because of fine scale land cover heterogeneity and lack of coherent scaling relationships. Here, the impact of urban land cover heterogeneity, scale, and configuration on the hydrologic and surface energy budget (SEB) is assessed using an integrated, coupled land surface/hydrologic model at high spatial resolutions. Archetypes of urban land cover are simulated at varying resolutions using both the National Land Cover Database (NLCD; 30 m) and an ultra high‐resolution land cover dataset (0.6 m). The analysis shows that the impact of highly organized, yet heterogeneous, land cover typical of the urban domain can cause large variations in hydrologic and energy fluxes within areas of similar land cover. The lateral flow processes that occur within each simulation create variations in overland flow of up to ±200% and ±4% in evapotranspiration. The impact on the SEB is smaller and largely restricted to the wet season for our semi‐arid forcing scenarios. Finally, we find that this seasonal bias, predominantly caused by lateral flow, is displaced by a systematic diurnal bias at coarser resolutions caused by deficiencies in the method used for scaling of land surface and hydrologic parameters. As a result of this research, we have produced land surface parameters for the widely used NLCD urban land cover types. This work illustrates the impact of processes that remain unrepresented in traditional high‐resolutions land surface models and how they may affect results and uncertainty in modeling of local water resources and climate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Terraces are a common feature of Mediterranean landscapes. In many places they are no longer maintained so that the number of intact terraces is in prolonged decline. The aim of this paper is to examine the effect of terrace removal and failure on hydrological connectivity and peak discharge in an agricultural catchment (475 ha) in south‐east Spain. The situation of 2006 is compared to that in 1956 and to a scenario without terraces (S2). The spatial distribution of concentrated flow was mapped after four storms in 2006. The degree of connectivity was quantified by means of connectivity functions and related to storm characteristics, land use and topography. For 1956, 2006 and scenario S2, connectivity functions and peak discharge to the river were determined for a storm with a return period of 8·2 years. The results show that the decrease in intact terraces has led to a strong increase in connectivity and discharge. The contributing area to the river system has increased by a factor 3·2 between 1956 and 2006. If all terraces were to be removed (scenario S2), the contributing area may further increase by a factor 6·0 compared to 2006. The spatial extent of concentrated flow and the degree of connectivity are related to storm magnitude as expressed by the erosivity index (EI30). Although a large part of the concentrated flow (25–50%) occurs on dirt roads, it appears that croplands become a major source of runoff with increasing rainfall. The results suggest that connectivity theory can be used to improve rainfall–runoff models in semi‐arid areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A three year monitoring programme of gully‐head retreat was established to assess the significance of sediment production in a drainage network that expanded rapidly by gully‐head erosion on the low‐angled alluvio‐lacustrine Njemps Flats in semi‐arid Baringo District, Kenya. This paper discusses the factors controlling the large observed spatial and temporal variation in gully‐head retreat rates, ranging from 0 to 15 m a?1. The selected gullies differed in planform and in runoff‐contributing catchment area but soil material and land use were similar. The data were analysed at event and annual timescales. The results show that at annual timescale rainfall amount appears to be a good indicator of gully‐head retreat, while at storm‐event timescale rainfall distribution has to be taken into account. A model is proposed, including only rainfall (P) and the number of dry days (DD) between storms: which explains 56 per cent of the variation in retreat rate of the single‐headed gully of Lam1. A detailed sediment budget has been established for Lam1 and its runoff‐contributing area (RCA). By measuring sediment input from the RCA, the sediment output by channelized flow and linear retreat of the gully head for nine storms, it can be seen that erosion shifts between different components of the budget depending on the duration of the dry period (DD) between storms. Sediment input from the RCA was usually the largest component for the smaller storms. The erosion of the gully head occurred as a direct effect of runoff falling over the edge (GHwaterfall) and of the indirect destabilization of the adjacent walls by the waterfall erosion and by saturation (GHmass/storage). The latter component (GHmass/storage) was usually much larger that the former (GHwaterfall). The sediment output from the gully was strongly related to the runoff volume while the linear retreat, because of its complex behaviour, was not. Overall, the results show that the annual retreat is the optimal timescale to predict retreat patterns. More detailed knowledge about relevant processes and interactions is necessary if gully‐head erosion is to be included in event‐based soil erosion models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Chahardouly basin is located in the western part of Iran and is characterized by semi‐arid climatic conditions and scarcity in water resources. The main aquifer systems are developed within alluvial deposits. The availability of groundwater is rather erratic owing to the occurrence of hard rock formation and a saline zone in some parts of the area. The aquifer systems of the area show signs of depletion, which have taken place in recent years due to a decline in water levels. Groundwater samples collected from shallow and deep wells were analysed to examine the quality characteristics of groundwater. The major ion chemistry of groundwater is dominated by Ca2+ and HCO3?, while higher values of total dissolved solids (TDS) in groundwater are associated with high concentrations of all major ions. An increase in salinity is recorded in the down‐gradient part of the basin. The occurrence of saline groundwater, as witnessed by the high electrical conductivity (EC), may be attributed to the long residence time of water and the dissolution of minerals, as well as evaporation of rainfall and irrigation return flow. Based on SAR values and sodium content (%Na), salinity appears to be responsible for the poor groundwater quality, rendering most of the samples not suitable for irrigation use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Irrigation of agricultural oases is the main water consumer in semi‐arid and arid regions of Northwestern China. The accurate estimation of evapotranspiration (ET) on the oases is extremely important for evaluating water use efficiency so as to reasonably allocate water resources, particularly in semi‐arid and arid areas. In this study, we integrated the soil moisture information into surface energy balance system (SEBS) for improving irrigated crop water consumption estimation. The new approach fed with the moderate resolution imaging spectro‐radiometer images mapped spatiotemporal ET on the oasis in the middle reach of the Heihe river. The daily ET outputs of the new approach were compared with those of the original SEBS using the eddy correlation observations, and the results demonstrate that the modified SEBS remedied the shortcoming of general overestimating ET without regard to soil water stress. Meanwhile, the crop planting structure and leaf area index spatiotemporal distribution in the studied region were derived from the high‐resolution Chinese satellite HJ‐1/CCD images for helping analyse the pattern of the monthly ET (ETmonthly). The results show that the spatiotemporal variation of ETmonthly is closely related to artificial irrigation and crop growth. Further evaluation of current irrigation water use efficiency was conducted on both irrigation district scale and the whole middle reach of the Heihe river. The results reveal that the average fraction of consumed water on irrigation district scale is 57% in 2012. The current irrigation water system is irrational because only 52% of the total irrigated amount was used to fulfil plant ET requirement and the rest of the irrigation water recharged into groundwater in the oasis in 2012. However, in view of the whole middle reach of the Heihe river, the irrigation water use efficiency could reach to 66% in 2012. But pumping groundwater for reused irrigation wastes mostly energy instead of water. An improved irrigation water allocation system according to actual ET requirement is needed to increase irrigation efficiency per cubic meter water resource in an effort to save both water and energy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The ability to predict vegetation cover effects on thermal/water regimes can enhance our understanding of canopy controls on evapotranspiration. The Simultaneous Heat and Water (SHAW) model is a detailed process model of heat and water movement in a snow–residue–soil system. This paper describes provisions added to the SHAW model for vegetation cover and simulation of heat and water transfer through the soil–plant–air continuum. The model was applied to four full years (May 2003–April 2007) of data collected on sparse grassland at Nalaikh in north‐eastern Mongolia. Simulated soil temperature and radiation components agreed reasonably well with measured values. The absolute differences between simulated and measured soil temperatures were larger at both the surface layer and deeper layer, but relatively smaller in the layer from 0·8 to 2·4 m. Radiation components were mimicked by the SHAW model with model efficiency (ME) reaching 0·93–0·72. Latent and sensible heat fluxes were simulated well with MEs of 0·93 and 0·87, respectively. The vegetation control on evapotranspiration was investigated by sensitivity experiments of model performance with changing leaf area index (LAI) values but constant of other variables. The results suggest that annual evapotranspiration ranged from 16 to ? 22% in response to extremes of doubled and zero LAI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号