首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small‐scale variations in surface moisture content were measured on a fine‐grained beach using a Delta‐T Theta probe. The resulting data set was used to examine the implications of small‐scale variability for estimating aeolian transport potential. Surface moisture measurements were collected on a 40 cm × 40 cm grid at 10 cm intervals, providing a total of 25 measurements for each grid data set. A total of 44 grid data sets were obtained from a representative set of beach sub‐environments. Measured moisture contents ranged from about 0% (dry) to 25% (saturated), by weight. The moisture content range within a grid data set was found to vary from less than 1% to almost 15%. The magnitude of within‐grid variability varied consistently with the mean moisture content of the grid sets, following an approximately normal distribution. Both very wet and very dry grid data sets exhibited little internal variability in moisture content, while intermediate moisture contents were associated with higher levels of variability. Thus, at intermediate moisture contents it was apparent that some portions of the beach surface could be dry enough to allow aeolian transport (i.e. moisture content is below the critical threshold), while adjacent portions are too wet for transport to occur. To examine the implications of this finding, cumulative distribution functions were calculated to model the relative proportions of beach surface area expected to be above or below specified threshold moisture levels (4%, 7%, and 14%). It was found that the implicit inclusion of small‐scale variability in surface moisture levels typically resulted in changes of less than 1% in the beach area available for transport, suggesting that this parameter can be ignored at larger spatial scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Experiments were conducted on Magilligan Strand, Northern Ireland, to assess the influence of the fetch effect on aeolian sediment transport. During each experiment surface sediments were uniformly dry and unhindered by vegetation or debris. The leading edge of erodible material was well defined, with the limit of wave up‐rush demarcating the wet–dry boundary; the work was conducted during low tides. A number of electronic and integrating traps were utilised, with two ultrasonic anemometers used to measure wind direction and velocity at 1 Hz. The combination of 1o direction data and trap locations resulted in a range of fetch distances, from 2 to 26 m. Data integrated over 15‐minute intervals (corresponding to the integrating trap data) revealed a distinct trend for all the experiments. An initial rapid increase in the transport rate occurred over a short distance (4–9 m). This maximum transport rate was maintained for a further 5–6 m before a steady decay in the flux followed, as fetch distance increased. A measured reduction in wind speed (6–8%) across the beach suggests a negative feedback mechanism may be responsible for the diminishing transport rate: the saltating grains induce energy dissipation, thus reducing the capability of the wind to maintain transport. For one experiment, the presence of compact sediment patches may also have contributed to the reduction of the transport rate. The decay trend calls into question the utility of the fetch effect as an important parameter in aeolian studies that seek to understand sediment budgets of the foredune‐beach zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Knowledge of surface moisture on beaches is vital for aeolian process studies because moisture increases transport thresholds and limits mass flux. A number of beach surface moisture measurement techniques have been employed in the field, including sample extraction, commercial soil moisture sensors, and remote sensing techniques. Each method has significant limitations in the context of aeolian process studies. This study was designed to test infrared optic techniques for measuring beach surface moisture. A simple infrared sensor (narrow‐band radiometer) was developed to measure beach surface moisture content. The accuracy and practical usability of the narrow‐band radiometer were assessed in comparison to a commercial handheld spectroradiometer. Field calibrations conducted at Cape San Blas, Florida and Padre Island, Texas indicated that the narrow‐band radiometer performed quite well. The R2 values exceeded 0·98 in each case, and the standard error averaged about 1% moisture content compared with gravimetric moisture contents determined from 1·5 mm deep surface scrapes. The performance of the two instruments was found to be comparable, with the narrow‐band radiometer slightly outperforming the spectroradiometer. In practical applications, the narrow‐band radiometer also has logistical advantages and is better suited to measure large numbers of points. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The moisture content ws of a beach surface strongly controls the availability of sand for aeolian transport. Our predictive capability of the spatiotemporal variability in ws, which depends to a large extent on water table depth, is, however, limited. Here we show that water table fluctuations and surface moisture content observed during a 10-day period on a medium-grained (365μm) planar (1:30) beach can be predicted well with the nonlinear Boussinesq equation extended to include run-up infiltration and a soil–water retention curve under the assumption of hydrostatic equilibrium. On the intertidal part of the beach the water table is observed and predicted to continuously fall from the moment the beach surface emerges from the falling tide to just before it is submerged by the incoming tide. We find that on the lower 30% of the intertidal beach the water table remains within 0.1–0.2 m from the surface and that the sand is always saturated (ws≈20%, by mass). Higher up on the intertidal beach, the surface can dry to about 5% when the water table has fallen to 0.4–0.5 m beneath the surface. Above the high-tide level the water table is always too deep (>0.5 m) to affect surface moisture and, without precipitation, the sand is dry (ws < 5 − 8%). Because the water table depth on the emerged part of the intertidal beach increases with time irrespective of whether the (ocean) tide falls or rises, we find no need to include hysteresis (wetting and drying) effects in the surface-moisture modelling. Model simulations suggest that at the present planar beach only the part well above mean sea level can dry sufficiently (ws < 10%) for sand to become available for aeolian transport. ©2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

6.
The aeolian sand transport model SAFE and the air flow model HILL were applied to evaluate cross‐shore changes at two nourished beaches and adjacent dunes and to identify the response of aeolian sand transport and morphology to several nourishment design parameters and fill characteristics. The main input of the model consisted of data on the sediment, tide and meteorological conditions, and of half‐yearly measured characteristics of topography, vegetation and sand fences. The cross‐shore profiles generated by SAFE–HILL were compared to measured cross‐shore profiles. The patterns of erosion and deposition, and the morphological development corresponded. In general, the rates of aeolian sand transport were overestimated. The impact of parameters that are related to beach nourishment (namely grain size, adaptation length and beach topography) on profile development was evaluated. Grain size affected the aeolian sand transport rate to the foredunes, and therefore the morphology. Adaptation length, which is a measure of the distance over which sediment transport adapts to a new equilibrium condition, affected the topography of the beach in particular. The topography of a beach nourishment had limited impact on both aeolian sand transport rate and morphology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Studies of sediment transport on developed coasts provide perspective on how human adjustments alter natural processes. Deployment of sand‐trapping fences is a common adjustment that changes the characteristics of the dune ramp and its role in linking sediment transfers from the backshore to the foredune. Fence effects were evaluated in the field using anemometer arrays and vertical sediment traps placed across a beach and dune at Seaside Park, New Jersey, USA during onshore and longshore winds. The foredune is 18 m wide and 4.5 m above the backshore. The mean speed of onshore winds at 0.5 m elevation decreased by 17% from the berm crest to the upper ramp and 36% in the lee of a fence there. Sediment transport during mean wind speeds up to 8.0 m s?1 at 0.5 m elevation was < 0.06 kg m?1 h?1 on the berm crest and backshore where fetch distances were < 45 m and surface sediment was relatively coarse (0.74–0.85 mm) but increased to 5.63 kg m?1 h?1 on the upper ramp aided by the longer fetch distances (up to 82 m) and finer grain size of the source sediment there (0.52 mm). Sediment transport along the berm crest and backshore during longshore winds, where fetch distances were > 200 m, was up to 58.69 kg m?1 h?1, about three orders of magnitude greater than during the onshore winds. Fences can displace the toe of the ramp farther seaward than would occur under natural conditions. They can create a gentler slope and change the shape of the ramp to a more convex form. A fence on the ramp can cut off a portion of sediment supply to the upper slope. Decisions about fence placement thus should consider these morphologic changes in addition to the effects on dune volume. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
A new type of horizontal trap was developed for measuring the aeolian sand transport rate on a flat surface. The trap consists of an adjustable frame that is embedded level with the sand surface, into which a plastic liner is installed and filled with water to capture the blown sand. The water trap has high efficiency and does not disturb the wind field or induce upwind scour. Deployment on Padre Island, Texas, indicated that this portable and adjustable trap catches and retains all the sand blown into it, even under relatively strong wind. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Ephemeral aeolian sand strips are commonplace on beaches. Their formation during high energy sand transport events often precedes the development of protodunes and their dynamics present interesting feedback mechanisms with surface moisture patterns. However, due to their temporary nature, little is known of their formation, mobility or the specifics of their interaction with beach surface characteristics. Similarly surface moisture has an important influence on sediment availability and transport in aeolian beach systems, yet it is difficult to quantify accurately due to its inherent variability over both short spatial and temporal scales. Whilst soil moisture probes and remote sensing imagery techniques can quantify large changes well, their resolution over mainly dry sand, close to the aeolian transport threshold is not ideal, particularly where moisture gradients close to the surface are large. In this study we employed a terrestrial laser scanner to monitor beach surface moisture variability during a three and a half hour period after a rain event and investigated relationships between bedform development, surface roughness and surface moisture. Our results demonstrate that as the beach surface dries, sand transport increases, with sediment erosion occurring at the wet/dry surface boundary, and deposition further downwind. This dynamic structure, dependent upon changing surface moisture characteristics, results in the formation of a rippled sand strip and ultimately a protodune. Our findings highlight dynamic mobility relationships and confirm the need to consider transient bedforms and surface moisture across a variety of scales when measuring aeolian transport in beach settings. The terrestrial laser scanner provides a suitable apparatus with which to accomplish this. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment budget data from an 18‐month topographic survey were analysed with data from brief experiments on wind parameters, beach moisture contents, bedforms and sand mobilization in order to monitor conditions and patterns of embryo dune development over a flat 150–1000 m wide accreting upper beach. The surface conditions over the upper beach locally affect aeolian transport, but net dune development over time depends on sustained strong winds and their orientation. Incoming marine sand supplied by storms and onshore winds is reorganized by the dominant offshore to longshore winds into elongated embryo dunes over this upper beach, imprinting a regional morphology of long‐term longshore dune ridge development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A remote sensing technique for assessing beach surface moisture was used to provide insight into beach‐surface evolution during an aeolian event. An experiment was carried out on 21 October 2007 at Greenwich Dunes, Prince Edward Island National Park, Canada, during which cameras were mounted on a mast on the foredune crest at a height of about 14 m above the beach. Maps of beach surface moisture were created based on a calibrated relationship between surface brightness from the photographs and surface moisture content measured in situ at points spaced every 2.5 m along a transect using a Delta‐T moisture probe. A time sequence of maps of surface moisture content captured beach surface evolution through the transport event at a spatial and temporal resolution that would be difficult to achieve with other sampling techniques such as impedance probes. Erosion of the foreshore and berm crest resulted in an increase in surface moisture content in these areas as the wetter underlying sediments were exposed. Flow expansion downwind of the berm crest led to sand deposition and a consequent decrease in surface moisture content. Remote sensing systems such as the one presented here allow observations of the combined evolution of beach surface moisture, shoreline position, and fetch distances during short‐term experiments and hence provide a comprehensive rendering of sediment erosion and transport processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Saltation is the dominant form of aeolian transport of sand sized grains, yet its heterogeneous spatial and temporal distribution, and inherent feedback and interaction with the surface over which sand is transported, hinders large scale quantification. In this letter we present preliminary data on saltation cloud characteristics quantified using terrestrial laser scanning (TLS). These data, together with surface moisture and surface roughness patterns, elucidate the importance of saltation in the development of protodunes on a drying beach, and indicate the potential usefulness of TLS in examining aeolian processes in both beach and desert environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A one-day field investigation on an unvegetated backbeach documents the importance of surface sediment drying to aeolian transport. Surface sediments were well sorted fine sand. Moisture content of samples taken in the moist areas on the backbeach varied from 2·9 to 9·2 per cent. Lack of dry sediment inhibited transport prior to 08:50. By 09:10 conspicuous streamers of dry sand moved across the moist surface. Barchan-shaped bedforms, 30 to 40 mm high and composed of dry sand (moisture content <0·10 per cent), formed where sand streamers converged. The surface composed of dry sand increased from 5 per cent of the area of the backbeach at 09:50 to 90 per cent by 12:50 Mean wind speeds were beetween 5·6 and 8·6 m s−1 at 6 m above the backbeach. Corresponding shear velocities were always above the entrainment threshold for dry sand and below the threshold for the moist sand on the backbeach. Measured rates of sand trapped (by vertical cylindrical traps) increased during the day relative to calculated rates. The measured rate of sand trapped on the moist foreshore was higher than the rate trapped on the backbeach during the same interval, indicating that the moist foreshore (moisture content 18 per cent) was an efficient transport surface for sediment delivered from the dry portion of the beach upwind. Measured rates of sand trapped show no clear relationship to shear velocities unless time-dependent surface moisture content is considered. Results document conditions that describe transport across moist surfaces in terms of four stages including: (1) entrainment of moist sediment from a moist surface; (2) in situ drying of surface grains from a moist surface followed by transport across the surface; (3) entrainment and transport of dry sediment from bedforms that have accumulated on the moist surface; and (4) entrainment of sand from a dry upwind source and transport across a moist downwind surface. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Vertical profiles of the streamwise mass flux of blown sand in the near-bed (< 17 mm) region are analysed from high-resolution measurements made using an optical sensor in a wind tunnel. This analysis is complemented by detailed measurements of mass flux and mean velocity profiles throughout the boundary layer depth (0·17 m) using passive, chambered sand traps of small dimensions and armoured thermal anemometers, respectively. The data permit a preliminary analysis of the relations between the observed forms of the profiles of near-bed fluid stress and horizontal mass flux within a carefully conditioned boundary layer. Profiles of mass flux density are found to be characterized by three regions of differing gradient with transitions at about 2 mm and 19 mm above the bed. The exponential decay of mass flux with height is confirmed for elevations above 19 mm, and when plotted as a function of u*2/g (a parameter of mean vertical trajectory height in saltation), the gradient of mass flux in this region scales with the wake-corrected friction velocity (u), where u > 0·30 m s−1. A separate near-bed region of more intense transport below 19 mm is identified which carries 80 per cent of the total mass flux. This region is evident in some previous field and wind tunnel data but not in profiles simulated by numerical models. Ventilated passive sand traps underestimate mass flux in this region by 37 per cent. At slow or moderate wind speeds a third significant region below 2 mm is observed. These regions are likely to be related to grain populations in successive saltation, low-energy ejections and intermittent bed contact, respectively. Optical measurements reveal locally high grain concentrations at some elevations below 5 mm; these heights scale with transport rate, mass flux gradient and wind speed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Estimates of the wind shear stress exerted on Earth's surface using the fully rough form of the law‐of‐the‐wall are a function of the aerodynamic roughness length, z0. Accurate prediction of aeolian sediment transport rates, therefore, often requires accurate estimates of z0. The value of z0 is determined by the surface roughness and the saltation intensity, both of which can be highly dynamic. Here we report field measurements of z0 values derived from velocity profiles measured over an evolving topography (i.e. sand ripples). The topography was measured by terrestrial laser scanning and the saltation intensity was measured using a disdrometer. By measuring the topographic evolution and saltation intensity simultaneously and using available formulae to estimate the topographic contribution to z0, we isolated the contribution of saltation intensity to z0 and document that this component dominates over the topographic component for all but the lowest shear velocities. Our measurements indicate that the increase in z0 during periods of saltation is approximately one to two orders of magnitude greater than the increase attributed to microtopography (i.e. evolving sand ripples). Our results also reveal differences in transport as a function of grain size. Each grain‐size fraction exhibited a different dependence on shear velocity, with the saltation intensity of fine particles (diameters ranging from 0.125 to 0.25 mm) saturating and eventually decreasing at high shear velocities, which we interpret to be the result of a limitation in the supply of fine particles from the bed at high shear velocities due to bed armoring. Our findings improve knowledge of the controls on the aerodynamic roughness length and the grain‐size dependence of aeolian sediment transport. The results should contribute to the development of improved sediment transport and dust emission models. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This study examined the influence of tidally‐induced oscillations of the beach water table in regulating beach surface moisture dynamics. A series of laboratory experiments were conducted to assess the influence of hysteresis and transient flow effects on surface moisture variability. The experimental apparatus utilized a column of well‐sorted fine sand partially immersed in a reservoir of water. The water level in the reservoir was raised and lowered via a diaphragm‐metering pump to simulate tidally induced fluctuations of the water table, and the moisture content profile within the column was monitored using an array of Delta‐T probes. Moisture contents at specific elevations within the column were utilized as proxies to represent various ‘surface’ elevations (relative to the high water table). Results indicate that surface moisture content behaves in a distinctly hysteretic manner. Examination of water flow scanning curves illustrated that for all surface elevations considered, higher moisture contents for a given pressure head occurred during the drying cycle than during the wetting cycle. This observation is particularly evident with shallow surface elevations (i.e. water table close to the surface) where the Haines Jump phenomenon was found to have a significant influence on moisture content dynamics. Additionally, an assessment of the accuracy of hysteretic and non‐hysteretic models to predict the measured moisture contents demonstrated that hysteretic simulations consistently provide a better representation of the observed moisture contents than non‐hysteretic simulations. A time lag was found between the respective maxima and minima in water table elevation surface moisture content. At the near surface water table positions the time lag ranged between 30 and 100 minutes, and it increased to 240 minutes (four hours) with the high water table at 60 cm below the surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper discusses a model which simulates dune development resulting from aeolian saltation transport. The model was developed for application to coastal foredunes, but is also applicable to sandy deserts with transverse dunes. Sediment transport is calculated using published deterministic and empirical relationships, describing the influence of meteorological conditions, topography, sediment characteristics and vegetation. A so-called adaptation length is incorporated to calculate the development of transport equilibrium along the profile. Changes in topography are derived from the predicted transport, using the continuity equation. Vegetation height is incorporated in the model as a dynamic variable. Vegetation can be buried during transport events, which results in important changes in the sediment transport rates. The sediment transport model is dynamically linked to a second-order closure air flow model, which predicts friction velocities over the profile, influenced by topography and surface roughness. Modelling results are shown for (a) the growth and migration of bare, initially sine-shaped dunes, and (b) dune building on a partly vegetated and initially flat surface. Results show that the bare symmetrical dunes change into asymmetric shapes with a slipface on the lee side. This result could only be achieved in combination with the secondorder closure model for the calculation of air flow. The simulations with the partly vegetated surfaces reveal that the resulting dune morphology strongly depends on the value of the adaptation length parameter and on the vegetation height. The latter result implies that the dynamical interaction between aeolian activity and vegetation (reaction to burial, growth rates) is highly relevant in dune geomorphology and deserves much attention in future studies. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Blowouts are depressions that occur on coastal dunes, deserts and grasslands. The absence of vegetation in blowouts permits high speed winds to entrain and remove sediment. Whereas much research has examined patterns of wind flow and sediment transport on the stoss slopes and lee of sand dunes, no study has yet investigated the connections between secondary air‐flow structures and sediment transport in a blowout where zones of streamline compression, expansion and steering are less clearly delineated. In this study we investigated the variability of sediment flux and its relation to near‐surface wind speed and turbulence within a trough blowout during wind flow that was oblique to the axis of the blowout. Wind flow was measured using six, three‐dimensional (3D) ultrasonic anemometers while sediment flux by eight sand traps, all operating at 25 Hz. Results demonstrated that sediment flux rates were highly variable throughout the blowout deflation basin, even over short distances (< 0.5 m). Where flow was steadiest, flux was greatest. Consequently the highest rates of sediment transport were recorded on the erosional wall crest where flow was compressed and accelerated. The strength of correlation between sediment flux and wind parameter improved with an increase in averaging interval, from 10 seconds to 1 minute. At an interval of 10 seconds, however, wind speed correlated best with flux at seven of eight traps, whereas at an interval of one minute Turbulent Kinetic Energy (TKE) provided the best correlation with flux at six of the eight traps. Correlation between sediment flux and wind parameters was best in the centre of the blowout and poorest on the erosional wall crest. The evidence from this paper suggests, for the first time, that TKE may be a better predictor of sediment transport at minute scale averaging intervals, particularly over landforms where wind flow is highly turbulent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号