首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to the potential shortcomings of single-technique strategies in the investigation of erosion and sedimentation, a combined magnetic and radiometric (13Cs and 210Pb) approach has been undertaken in the upland, watershed-lake system of Howden Reservoir, Derbyshire. By combining these techniques, some assessment of sediment sources and the erosion status of the catchment has been achieved. Alone, each approach would have been unable to determine unequivocally sediment provenance. Furthermore, the parallel use of these measurements has highlighted limitations and/or uncertainties in both the magnetic and 137Cs techniques. These problems reflect the particular soil characteristics and drainage conditions of this upland catchment. Despite the documented severity of peat erosion in the region, Howden Reservoir has a mixture of sediment sources and a relatively moderate rate of sedimentation. Sediment yields (total 127·7 t km?2 yr?1 including organic fraction 31·3 t km?2 yr?1) are, however, higher than in other British upland areas.  相似文献   

2.
In the Négron River catchment area (162 km2), surface‐sediment stores are composed of periglacial calcareous ‘grèze’ (5 × 106 t) and loess (21 × 106 t), and Holocene alluvium (12·6 × 106 t), peat (0·6 × 106 t) and colluvium (18·5 × 106 t). Seventy‐five per cent of the Holocene sediments is stored along the thalwegs. Present net sediment yield, calculated from solid discharge at the Négron outlet, is low (0·6 t km?2 a?1) due to the dominance of carbonate rocks in the catchment. Mean sediment yield during the Holocene period is 7·0 t km?2 a?1 from alluvium stores and 7·6 t km?2 a?1 from colluvium stores. Thus, the gross sediment yield during the Holocene period is about 18·7 t km?2 a?1 and the sediment delivery ratio 3 per cent. The yield considerably varies from one sub‐basin to another (3·9 to 24·5 t km?2 a?1) according to lithology: about 25 per cent and 50 per cent of initial stores of periglacial grèze and loess respectively were reworked during the Holocene period. Sediment yield has increased by a factor of 6 in the last 1000 years, due to the development of agriculture. The very high rate of sediment storage on the slope during that period (88 per cent of the yield) can be accounted for by the formation of cultivation steps (‘rideaux’). It is predicted that the current destruction of these steps will result in a sediment wave reaching the valley floors in the coming decades. Subboreal and Subatlantic sediments and pollen assemblages in the Taligny marsh, where one‐third of the alluvium is stored, show the predominant influence of human activity during these periods in the Négron catchment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The black soil region of northeast China,which covers the Provinces of Heilongjiang,Jilin and the Inner Mongolia autonomous region with black soil,chernozem and meadow soil,has experienced soil erosion since intense agricultural reclamation began approximately 100 years ago.However,the sediment delivery ratio,defined as the fraction of gross erosion that is transported from a given area in a given time interval,is still unclear.In this study,we calculated the delivery ratio and analysed changes in erosive processes within Hebei catchment from 1977 to 2007 based on an analysis of sediments of the Liudui reservoir.The original vegetation layer clearly identified the bottom of the reservoir when it was constructed in 1977;thus,the reservoir sediments could be precisely dated.The delivery ratio,calculated by comparing the sediment deposition in the reservoir with the total soil erosion in the upstream catchment,was found to be exponentially correlated(r2 = 0.95,P < 0.01) with decreasing grain size,except for the fraction <0.002 mm.The delivery ratio for the clays(<0.002 mm) was low,averaging 0.10 during the study period, which indicated partial removal of clays from the reservoir.The changes in the reservoir deposition rate reflected the temporal changes in the erosion processes.The exceptionally high rainfall in 1998 was confirmed by the distributions of 137Cs,210Pb,and the grain-size of the sediments.Beginning from the position of the original grass layer,we defined three periods from 1977 to 2007 based on deposition rates:2.40 cm year-1 from 1977 to 1997,5.60 cm year-1 in 1998 due to unusually high rainfall,and 1.55 cm year-1 from 1999 to 2007.The overall average deposition rate for the entire period was 2.26 cm year-1.Precipitation was found to be the main factor affecting the soil erosion of the study area.  相似文献   

4.
This paper investigates temporal variations in fluxes of peat and other sediment in the catchment of March Haigh Reservoir, West Yorkshire. Long‐term estimates of sediment yield were derived from a study of reservoir sediments. Magnetic properties were used to correlate ten cores to a master profile dated using 210Pb and 137Cs. A 14C date suggests that most of the organic component of the sediment is allochthonous and derived from peat eroded from the catchment. Organic sediment yields suggest low catchment erosion rates between 1838 and 1963. Blanket peat erosion increased significantly after 1963, and peaked between 1976 and 1984. Estimates of total sediment yield range between 2 and 28 t km?2 a?1. These yields are significantly lower than those from some previous studies examining reservoir sedimentation in other blanket peat‐covered catchments. The low yield estimates may be due to relatively low rates of erosion in the basin, but may also be partly explained by maintenance of silt traps during the early life of the reservoir and removal of sediment by scouring. Sedimentation within the reservoir is spatially variable, and bathymetry and sediment source appear to be the dominant controls on sedimentation patterns within the reservoir. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Gullying has been widespread in the Ethiopian Highlands during the 20th century. It threatens the soil resource, lowers crop yields in intergully areas through enhanced drainage and desiccation, and aggravates flooding and reservoir siltation. Knowing the age and rates of gully development during the last few decades will help explain the reasons for current land degradation. In the absence of historical written or photographic documentation, the AGERTIM method (Assessment of Gully Erosion Rates Through Interviews and Measurements) has been developed. It comprises measurements of contemporary gully volumes, monitoring of gully evolution over several years and semi‐structured interview techniques. Gully erosion rates in the Dogu'a Tembien District, Tigray, Ethiopia, were estimated in three representative case‐study areas. In Dingilet, gullying started around 1965 after gradual environmental changes (removal of vegetation from cropland in the catchment and eucalyptus plantation in the valley bottom); rill‐like incisions grew into a gully, which increased rapidly in the drier period between 1977 and 1990. The estimated evolution of the total gully volume in the other areas show patterns similar to those of the Dingilet gully. Average gully erosion rate over the last 50 years is 6·2 t ha?1 a?1. Since 1995, no new gullies have developed in the study area. Area‐specific short‐term gully erosion rates are now on average 1·1 t ha?1 a?1. The successful application of the AGERTIM method requires an understanding of the geomorphology of the study area and an integration of the researchers with the rural society. It reveals that rapid gully development in the study area is some 50 years old and is mainly caused by human‐induced environmental degradation. Under the present‐day conditions of ‘normal’ rain and catchment‐wide soil and water conservation, gully erosion rates are decreasing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Rill erosion is an important erosional form on agricultural soils in England, causing large losses of soil, particularly on cultivated slopes. This paper describes a rill system that developed in a small agricultural catchment in north Oxfordshire during the winter of 1992–93. The rill system comprised two components: a system of ‘feeder rills’ along the valley-side slopes, which were the result of flow concentration and erosion along wheelings, and a thalweg rill, which formed along a dry valley bottom as a result of surface runoff concentration from the feeder rills. Total volumetric soil loss from the rill system was 32·28 m3, equivalent to 3·01 m3, ha?1 for the rill catchment area, or 3·91 t ha?1. Mean discharge for the thalweg rill and feeder rills, calculated during a storm event, was 31·101s?1 and 1·171s?1, respectively. All flows were fully turbulent and supercritical. We emphasize the need for a spatially distributed approach to the study of runoff and erosion at the catchment scale.  相似文献   

7.
Vertical profiles of the activities of 137Cs and 210Pb were measured on floodplain sediment cores and upland soil cores along the Soda Butte Creek and the Yellowstone River to determine floodplain sedimentation rates. The position of mine tailings from a 1950 impoundment failure was used as a stratigraphic marker to estimate the sedimentation rates and to make comparisons with rates provided by radionuclide‐based methods. Mass accumulation (sedimentation) rates calculated from the position of the mine tailings ranged from 0·00 to 0·17 g cm?2 yr?1 and were in good agreement with sedimentation rates calculated from the inventories of 137Cs and 210Pb. Sedimentation rates calculated from the position of the 137Cs peak generally overestimated the sedimentation rates, probably because of increased downward migration of 137Cs caused by the low pH of water moving through the mine tailings or the high permeability of floodplain sediments relative to upland reference soils. This study demonstrates that the 137Cs and 210Pb inventory methods for determining sedimentation rates can be applied to an alpine floodplain where sedimentation events are episodic and where orographic effects on precipitation generate strong downstream gradients in the delivery of atmospheric radionuclides. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Soil erosion in New Zealand exports much sediment and particulate organic carbon (POC) to the sea. The influence of this carbon export on carbon transfers between soils and the atmosphere has been largely unknown. Erosion models are used to estimate the net carbon transfer between soils and atmosphere due to soil erosion for New Zealand. The models are used to estimate the spatial distribution of erosion, which is combined with a digital map of soil organic carbon content to produce the spatial distribution of carbon erosion. The sequestration of atmospheric CO2 by regenerating soils is estimated by combining carbon recovery data with the age distribution of soils since erosion occurrence. The North Island of New Zealand is estimated to export 1·9 (with uncertainty of ?0·5 and +1·0) million tonnes of POC per year to the sea and to sequester 1·25 (?0·3 /+0·6) million tonnes of carbon per year from the atmosphere through regenerating soils. The South Island of New Zealand is estimated to export 2·9 (?0·7/+1·5) million tonnes of POC per year and to sequester approximately the same amount. Assuming exported carbon is buried at sea with an efficiency of 80% gives New Zealand a net carbon sink of 3·1 (?2·0/+2·5) million tonnes per year; which is equivalent to 45% of New Zealand's fossil fuel carbon emissions in 1990. The net sink primarily results from a conveyor belt transfer of carbon from the atmosphere to soils regenerating from erosion to the sea floor where carbon is permanently buried. The net sink due to soil erosion can be further increased by reforestation of those terrains where erosion is excessive and there is no carbon recovery in the soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Sediments produced from eroding cultivated land can cause on‐site and off‐site effects that cause considerable economic and social impacts. Despite the importance of soil conservation practices (SCP) for the control of soil erosion and improvements in soil hydrological functions, limited information is available regarding the effects of SCP on sediment yield (SY) at the catchment scale. This study aimed to investigate the long‐term relationships between SY and land use, soil management, and rainfall in a small catchment. To determine the effects of anthropogenic and climatic factors on SY, rainfall, streamflow, and suspended sediment concentration were monitored at 10‐min intervals for 14 years (2002–2016), and the land use and soil management changes were surveyed annually. Using a statistical procedure to separate the SY effects of climate, land use, and soil management, we observed pronounced temporal effects of land use and soil management changes on SY. During the first 2 years (2002–2004), the land was predominantly cultivated with tobacco under a traditional tillage system (no cover crops and ploughed soil) using animal traction. In that period, the SY reached approximately 400 t·km?2·year?1. From 2005 to 2009, a soil conservation programme introduced conservation tillage and winter cover crops in the catchment area, which lowered the SY to 50 t·km?2·year?1. In the final period (2010–2016), the SCP were partially abandoned by farmers, and reforested areas increased, resulting in an SY of 150 t·km?2·year?1. This study also discusses the factors associated with the failure to continue using SCP, including structural support and farmer attitudes.  相似文献   

11.
210Pb- and137Cs-measurements, and varve counting have been used to date sediment cores from Lake Zurich (Switzerland). Two cores from different water depths were dated with210Pb/210Po and revealed sediment accumulation rates of (0.055±0.015) g·cm?2·y?1 and (0.09±0.03) g·cm?2·y?1, respectively. A comparable rate of (0.07±0.01) g·cm?2·y?1 has been obtained from137Cs measurements. These rates were confirmed by annual layer (varve)-counts which lead to rates of 0.07 g·cm?2·y?1. Constant210Pb activities were observed in the top 6 cm of the sediment cores. This constancy is generally explained in the literature by mixing processes caused by bioturbation and by distortion during coring operations of the uppermost water-rich fluffy sediments. However the distinct137Cs-maxima and the regular and undisturbed varve lamination of the top sediment observed in the cores of Lake Zurich contradict this assumption. In addition, measurements of7Be at the water/sediment interaces proved complete sediment core recovery and mechanically undisturbed sediments. Remobilization processes are assumed to cause the observed constant210Pb activities. Remobilization may also be the reason for an incomplete210Pb inventory in the sediments which contain only about 50% of the fallout from atmosphere. The results of the210Pb dating should therefore be considered with some care. If existent, varve counting represents the easiest and most reliable means for dating lake sediments.  相似文献   

12.
The increase of the nitrate concentration in surface waters used as water supply resources has been investigated with a view to the effects of agricultural activities and atmospheric precipitation. The nitrate concentration increased beyond the acceptable limit for infants after 1975, when due to the permanent augmentation of the synthetic fertilizer rates the organic humus quantities decreased to a minimum. The variability of nitrate concentrations in atmospheric precipitation is dependent on the magnitude of precipitation and the intensity of industry in the given region. At an average value of atmospheric precipitation the nitrogen value in agricultural regions varies within 6 to 12 kg · ha?1 · a?1, in regions with extended industries up to 24 kg · ha?1 · a?1.  相似文献   

13.
This study concerns the problem of water erosion in the Sahel. Surface water and sediment yields (suspended matter and bedload) were monitored for 3 years (1998–2000) at the outlet of a small grazed catchment (1·4 ha) in the northern part of Burkina Faso. The catchment consists of about 64% sandy deposits (DRY soil surface type), which support most of the vegetation, and about 34% of crusted bare soils (ERO soil surface type). The annual solid‐matter export is more than 90% suspended sediment, varying between 4·0 and 8·4 t ha?1. The bedload represents less than 10% of soil losses. In a single flood event (10 year return period), the sediment yield can reach 4·2 t ha?1. During the period studied, a small proportion (20 to 32%) of the floods was thus responsible for a large proportion (80%) of the solid transport. Seasonal variation of the suspended‐matter content was also observed: high mean values (9 g l?1) in June, decreasing in July and stabilizing in August (between 2 and 4 g l?1). This behaviour may be a consequence of a reorganization of the soil surfaces that have been destroyed by trampling animals during the previous long dry season, vegetation growth (increase in the protecting effect of the herbaceous cover) and, to a lesser extent, particle‐supply limitation (exhaustion of dust deposits during July). The particle‐size distribution in the suspended matter collected at the catchment outlet is 60% made up of clay: fraction ≤2 µ m. The contribution of this clay is maximum when the water rises and its kaolinite/quartz ratio is then close to that of the ERO‐type surfaces. This indicates that these surfaces are the main source of clay within the catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A simple field‐based monitoring programme was established in a small catchment (area 4·6 km2) to find the rates of gully erosion in the Siwalik Hills, Nepal. The rates are used to estimate the amount of sediment produced by gully erosion in the catchment. Three large and active gullies were selected with areas ranging from 0·44 to 0·78 ha. Aerial photographs taken in 1964, 1978 and 1992 were ortho‐rectified and used to study the dynamics of gully heads. The same gullies were also monitored manually using an orthogonal reference system fixed by erosion pins around the gully heads. Results from the aerial photos indicated that the gullies expanded remarkably over the period from 1964 to 1992, by 34 to 58 per cent. Head‐retreat rates during that period were 0·48, 0·55 and 0·73 m a?1 and average annual sediment evacuation was estimated as 2534 ± 171, 959 ± 60 and 2783 ± 118 m3 a?1 for the three gullies respectively. From the field measurement, estimated volumes were found to vary from 731 ± 57 to 2793 ± 201 m3 a?1 over the monitoring period of two years. It was also found that the gullies produce sediment which accounts for up to 59 per cent of the sediment produced from surface erosion in the headwater catchment. The findings are useful for planning and executing appropriate control measures and constructing a sediment hazard map at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A small hillslope was chosen to investigate the role of throughflow as a mechanism responsible for the movement of soil water and solutes towards a saline seep and as a source of recharge to a permanent, regional aquifer at depth. The hydraulic properties, chemical characteristics and physical responses of both systems were studied on a deeply weathered, salt-affected hillslope. Additional data were also obtained from other sites in south-western Australia. Regional groundwater flow occurred in a variably textured, deeply weathered material in which the hydraulic conductivity varied from < 0·001 to 0·14m day?1. Perched groundwater flow (throughflow) occurred in the higher permeability (? 1·5 m day?1), near-surface soil materials. Throughflow occurred throughout winter, contributing approximately 530 m3 of fresh (? 160 mg l?1 Cl) water to a saline seep. By contrast, the deep aquifer discharged approximately 1100 m3 of waters with salt concentrations of 2000–6000 mg l?1 Cl. Recharge and discharge rates to and from the deep aquifer, were estimated to be of the order of 5–20 mm a?1 and 50–300 mm a?1 respectively. Saturated conditions existed throughout winter within the seep and the immediately adjacent non-saline area, with up to 60 per cent of the hillslope soils becoming saturated after major rainfall events ( > 20 mm day?1). In the mid-slopes, in particular along a central depression, saturation of the shallow soils caused macropore channel recharge to take place through the clay-textured subsoils. Water-level responses suggest that approximately 25–30 per cent of annual recharge occurred from one storm studied in September 1984. Recharge through macropore channels is a significant mechanism in the concave slope areas on the hillslope. Throughflow was found to be a major source of water, but not salt, contributing to the saline seep. In general, the contribution of throughflow was found to decrease further inland at other sites studied. However, at inland sites where perennial, perched aquifers have developed in deep sands, saline areas have been caused by throughflow and not by deep aquifer discharge.  相似文献   

17.
The loss of P in overland flow from most cultivated soils is controlled by erosion, and in‐turn soil moisture. We evaluated the effect of soil moisture on erosion and P transport in overland flow by applying rainfall (7 cm h?1) to packed soil boxes (1 m long and 0·15 m wide) and field plots (1 and 10 m long by 1 m wide) of silt loams in a central Pennsylvania (USA) catchment. Flow from packed soil boxes took longer to initiate as antecedent soil moisture decreased from field capacity (2 min) to air dried (8 to 9 min). Even in the more complex field plots (i.e. soil heterogeneity and topography), the wetter site (1 by 10 m plot; 70% field capacity) produced flow more quickly (3 min) and in greater volume (439 L) than the drier site (1 by 10 m plot; 40% field capacity, 15 min, and 214 L, respectively). However, less suspended sediment was transported from wetter soil boxes (1·6 to 2·5 g L?1) and field plots (0·9 g L?1) than drier boxes (2·9 to 4·2 g L?1) and plots (1·2 g L?1). Differences are attributed to their potential for soil aggregate breakdown, slaking and dispersion, which contribute to surface soil sealing and crusting, as dry soils are subject to rapid wetting (by rainfall). During flow, selective erosion and antecedent moisture conditions affected P transport. At field capacity, DRP and PP transport varied little during overland flow. Whereas P transport from previously dry soil decreased rapidly after the initiation of flow (6 to 1·5 mg TP L?1), owing to the greater slaking and dispersion of P‐rich particles into flow at the beginning than end of the flow event. These results indicate that soil moisture fluctuations greatly effect erosion and P transport potential and that management to decrease the potential for loss should consider practices such as conservation tillage and cover crops, particularly on areas where high soil P and erosion coincide. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (Vetiveria zizanioides L.), with or without chelating agents, in remediating lead (Pb)‐contaminated soils from actual residential sites where Pb‐based paints were used. Because the primary factor affecting Pb phytoavailability in soils is soil pH, we used two soil types widely varying in pH that have total Pb concentrations above 1500 mg kg?1 soil. Lead‐contaminated, low pH, acidic soils were collected from residential sites in Baltimore, MD and high pH, alkaline soils were collected from residential sites in San Antonio, TX. Based on the soil characterization results, two most appropriate soils (one from each city, having similar Pb levels but variable soil physico‐chemical properties) were selected for this study. Ethylenediaminetetraacetic acid (EDTA) and [S,S′]ethylenediaminedisuccinate (EDDS) were applied at 5, 10, and 15 mmol kg?1 soil. Lead uptake and translocation in vetiver was determined on day 10 after chelants addition. Plant and soil analysis show that EDTA treated soils have maximum Pb uptake and lower total soil Pb levels. Prediction models developed for exchangeable Pb show a strong correlation for total Pb accumulated in vetiver grass. Results of the sequential chemical extraction of the soils at both initial and final time‐points, indicates a significant mobilization of Pb by the two chelants from carbonate‐bound fraction to exchangeable pool. Information on physico‐chemical properties of contaminated residential soils help in predicting Pb phytoextraction and thus further help in calibrating a successful chelant‐assisted phytoremediation model.  相似文献   

19.
A suite of 27 short cores, 10 of which have been used for magnetic measurements and four for radiometric dating, provides a framework for reconstructing the processes, patterns and rates of sedimentation in Ponsonby Tarn, a small artificial impoundment created towards the end of the 19th century, close to the Sellafield nuclear reprocessing plant in NW England. Spatial and temporal changes in sedimentation are reconstructed and evidence presented for non-synchroneity in magnetic property changes from core to core in the upper part of the sequence, as a result of sorting and selective deposition at different distances from the inflow to the Tarn. Magnetic measurements alone are therefore not a secure basis upon which to quantify sediment yield for defined time intervals at this site. The chronology, established mainly from 210Pb and 134Cs analyses, allows estimates of mean sediment yield per annum for four periods: prior to AD 1940, 1940–1964, 1964–1986 and 1986–1991. The rates of sediment accumulation have increased in recent times, especially since 1964, with evidence for input from both magnetically enhanced soils and gleyed alluvial and/or podsolized subsoil sources. Pre-1940 mean annual deposition within the present area of the lake is calculated as 19·5 t a−1 and for the period since 1986 (the period of maximum sedimentation rates), as 111·3 t a−1. These represent yields of 7·0 t km−2 a−1 and 39·8 t km−2 a−1, respectively, for the catchment as a whole. Rock magnetic evidence, based on measurements of both bulk samples and the finest particle size separates, suggests that bacterial magnetite, formed within the lake, contributes to the magnetic properties of the sediments, thus modifying the signatures relating to allochthonous sediment input. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号