首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 4 毫秒
1.
Analytical solutions for contaminant transport in a non‐uniform flow filed are very difficult and relatively rare in subsurface hydrology. The difficulty is because of the fact that velocity vector in the non‐uniform flow field is space‐dependent rather than constant. In this study, an analytical model is presented for describing the three‐dimensional contaminant transport from an area source in a radial flow field which is a simplest case of the non‐uniform flow. The development of the analytical model is achieved by coupling the power series technique, the Laplace transform and the two finite Fourier cosine transform. The developed analytical model is examined by comparing with the Laplace transform finite difference (LTFD) solution. Excellent agreements between the developed analytical model and the numerical model certificate the accuracy of the developed model. The developed model can evaluate solution for Peclet number up to 100. Moreover, the mathematical behaviours of the developed solution are also studied. More specifically, a hypothetical convergent flow tracer test is considered as an illustrative example to demonstrate the three‐dimensional concentration distribution in a radial flow field. The developed model can serve as benchmark to check the more comprehensive three‐dimensional numerical solutions describing non‐uniform flow contaminant transport. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two‐zone leaky confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation. A skin zone of constant thickness exists around the wellbore. A general solution to a two‐zone leaky confined aquifer system in Laplace domain is developed and inverted numerically to the time‐domain solution using the modified Crump (1976) algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their effects on drawdowns in a two‐zone leaky confined aquifer system. For the negative‐skin case, the drawdown is very sensitive to the relative change in the formation transmissivity. For the positive‐skin case, the drawdown is also sensitive to the relative changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well radius and formation storage coefficient at early pumping time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Wells in aquifers of loose collapsible sediment are cased so that they have a blind wall and gain water only from the bottom. The hydraulic gradient established at the bottom of these wells during pumping brings the aquifer materials in a quicksand state, which may cause abrasion of pipes and pumps and even the destruction of well structure. To examine the quicksand occurrence, an analytical solution for the steady flow to a partially penetrating blind‐wall well in a confined aquifer is developed. The validity of the proposed solution is evaluated numerically. The sensitivity of maximum vertical gradient along the well bottom in response to aquifer and well parameters is examined. The solution is presented in the form of dimensionless‐type curves and equations that can be easily used to design the safe pumping rate and optimum well geometry to protect the well against sand production. The solution incorporates the anisotropy of aquifer materials and can also be used to determine the hydraulic conductivity of the aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
An aquifer containing a skin zone is considered as a two-zone system. A mathematical model describing the head distribution is presented for a slug test performed in a two-zone confined aquifer system. A closed-form solution for the model is derived by Laplace transforms and Bromwich integral. This new solution is used to investigate the effects of skin type, skin thickness, and the contrast of skin transmissivity to formation transmissivity on the distributions of dimensionless hydraulic head. The results indicate that the effect of skin type is marked if the slug-test data is obtained from a radial two-zone aquifer system. The dimensionless well water level increases with the dimensionless positive skin thickness and decreases as the dimensionless negative skin thickness increases. In addition, the distribution of dimensionless well water level due to the slug test depends on the hydraulic properties of both the wellbore skin and formation zones.  相似文献   

6.
An analytical model is presented for the analysis of constant flux tests conducted in a phreatic aquifer having a partially penetrating well with a finite thickness skin. The solution is derived in the Laplace transform domain for the drawdown in the pumping well, skin and formation regions. The time-domain solution in terms of the aquifer drawdown is then obtained from the numerical inversion of the Laplace transform and presented as dimensionless drawdown–time curves. The derived solution is used to investigate the effects of the hydraulic conductivity contrast between the skin and formation, in addition to wellbore storage, skin thickness, delayed yield, partial penetration and distance to the observation well. The results of the developed solution were compared with those from an existing solution for the case of an infinitesimally thin skin. The latter solution can never approximate that for the developed finite skin. Dimensionless drawdown–time curves were compared with the other published results for a confined aquifer. Positive skin effects are reflected in the early time and disappear in the intermediate and late time aquifer responses. But in the case of negative skin this is reversed and the negative skin also tends to disguise the wellbore storage effect. A thick negative skin lowers the overall drawdown in the aquifer and leads to more persistent delayed drainage. Partial penetration increases the drawdown in the case of a positive skin; however its effect is masked by the negative skin. The influence of a negative skin is pronounced over a broad range of radial distances. At distant observation points the influence of a positive skin is too small to be reflected in early and intermediate time pumping test data and consequently the type curve takes its asymptotic form.  相似文献   

7.
The solution describing the wellbore flow rate in a constant‐head test integrated with an optimization approach is commonly used to analyze observed wellbore flow‐rate data for estimating the hydrogeological parameters of low‐permeability aquifers. To our knowledge, the wellbore flow‐rate solution for the constant‐head test in a two‐zone finite‐extent confined aquifer has never been reported so far in the literature. This article is first to develop a mathematical model for describing the head distribution in the two‐zone aquifer. The Laplace domain solutions for the head distributions and wellbore flow rate in a two‐zone finite confined aquifer are derived using the Laplace transform, and their corresponding time domain solutions are then obtained using the Bromwich integral method and residue theorem. These new solutions are expressed in terms of an infinite series with Bessel functions and not straightforward to calculate numerically. A large‐time solution for the wellbore flow rate is therefore developed by employing the relationship of small Laplace variable versus large time variable and L'Hospital's rule. The result shows that the large‐time solution is identical to the steady‐state solution obtained after applying the Tauberian theorem into the Laplace domain solution. This large‐time solution can reduce to the Thiem equation in the case of no skin. Finally, the newly developed solution is used to investigate the effects of outer boundary distance and conductivity ratio on the wellbore flow rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号