首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Automated digital photogrammetry was used to produce digital elevation models of experimental model landscapes under controlled laboratory conditions as part of a series of rainfall erosion experiments looking at the evolution of landforms in response to erosion. The method allowed the elevations of the experimental landscapes to be studied in great detail on a regular grid digital terrain map with relatively very little effort. Digital photogrammetry produced elevation data at a resolution of 6 mm with a standard deviation of 2·0 mm over an experimental catchment relief of approximately 200 mm; this resolution is considerably better than that achievable by conventional manual photogrammetry. The density of grid points was sufficiently high that small‐scale details such as knickpoints developing in channels were represented. The method can facilitate the study of both experimental and natural landscapes in great detail. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
An algorithm for automating the mapping of land components from digital elevation data is described. Land components are areas of relatively uniform slope and aspect and often correspond with ridge crests, shoulders, head slopes, back slopes or foot slopes. Aspect regions, which generally span from stream to ridge, are first identified by generalizing an aspect map derived from digital elevation data. The aspect regions are then split successively into land components by grouping pixels above or below an automatically determined contour of elevation or ‘distance from stream’. The contour approximates a slope break. The land components mapped in this way give a complete polygonization of a hilly landscape and are a reasonable approximation of manually mapped land components.  相似文献   

4.
5.
A physically-based method for removing pits in digital elevation models   总被引:1,自引:0,他引:1  
Spurious pits in digital elevation models (DEMs) are traditionally removed by filling depressions, often creating flat regions that lead to inaccurate estimation of landscape flow directions. In this study, a physical approach based on a simple landscape evolution model is proposed for DEM pit removal. This method, an alternative to traditional geometrical procedures, enforces more realistic slopes and flow directions on topography. The procedure is compared with the method most commonly used in the literature and distributed with commercial GIS software where, generally, elevations of a depression are increased up to the lowest value among neighbouring cells. Several tests are performed and parameters sensitivity is carried out in order to demonstrate the performance of the proposed model as compared to traditional methods.  相似文献   

6.
The feasibility of using small-scale digital elevation models (DEMs) to extract various drainage basin characteristics was evaluated by comparing basin parameters derived from the 1:250 000 DEMs with those from the 1:24 000 DEMs. Twenty basins ranging approximately from 150 km2 to 1000 km2 in West Virginia, a geologically complex region, were examined in this study. The basin parameters examined included those commonly used in hydrology and geomorphology such as elevation, slope, stream length, drainage density, relief ratio and ruggedness number. Our results suggested that the 1:250 000 DEMs can provide accurate estimates for elevation-based and stream-length-based basin parameters, but not for slope-based parameters. After examining the differences between the DEM-derived basin parameters from the two different scales, we found that the performance of the 1:250 000 DEMs was not significantly influenced by basin size, while terrain complexity seems to be an important factor of accuracy of the estimated basin parameters. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Tectonic movement along faults is often re?ected by characteristic geomorphological features such as linear valleys, ridgelines and slope‐breaks, steep slopes of uniform aspect, regional anisotropy and tilt of terrain. Analysis of digital elevation models, by means of numerical geomorphology, provides a means of recognizing fractures and characterizing the tectonics of an area in a quantitative way. The objective of this study is to investigate the use of numerical geomorphometric methods for tectonic geomorphology through a case study. The methodology is based on general geomorphometry. In this study, the basic geometric attributes (elevation, slope, aspect and curvatures) are complemented with the automatic extraction of ridge and valley lines and surface speci?c points. Evans' univariate and bivariate methodology of general geomorphometry is extended with texture (spatial) analysis methods, such as trend, autocorrelation, spectral, and network analysis. Terrain modelling is implemented with the integrated use of: (1) numerical differential geometry; (2) digital drainage network analysis; (3) digital image processing; and (4) statistical and geostatistical analysis. Application of digital drainage network analysis is emphasized. A simple shear model with principal displacement zone with an NE–SW orientation can account for most of the the morphotectonic features found in the basin by geological and digital tectonic geomorphology analyses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents improvements to the global D8 (GD8) method for calculating single flow directions in a grid digital elevation model. Flow directions computed from grid digital elevation models serve as the foundation for much of the analysis and modeling of hydrological processes that are driven by topographic gradients. The literature includes both single flow direction methods, where flow goes to only one downslope cell, and multiple flow direction methods that apportion flow among multiple downslope cells. Among single flow direction methods, the standard D8 method, in which the flow direction is set based on the steepest local slope, results in bias on surfaces that do not align with the grid directions. Efforts to address this problem have led to the development of extended methods that account for elevation values further upslope in determining flow directions. We have identified discrepancies in one such method, GD8, and have examined ways to resolve these discrepancies. An improvement to GD8, named iGD8, is presented that allows replacing a reference cell from which path deviations are accumulated and that considers horizontal path deviation rather than global slope as a flow direction criterion. The improved method is found to be effective in resolving the problems encountered with GD8 and to be more efficient than a previously proposed alternative method (least transversal deviation (LTD) based D8, namely D8‐LTD) that uses recursive searching for the largest upstream area when multiple flow paths converge. The proposed improved GD8 method offers the opportunity for improved analysis and modeling of topographically driven hydrological processes by providing better foundational flow directions for these analyses.  相似文献   

9.
10.
Digital flow networks derived from digital elevation models (DEMs) sensitively react to errors due to measurement, data processing and data representation. Since high‐resolution DEMs are increasingly used in geomorphological and hydrological research, automated and semi‐automated procedures to reduce the impact of such errors on flow networks are required. One such technique is stream‐carving, a hydrological conditioning technique to ensure drainage connectivity in DEMs towards the DEM edges. Here we test and modify a state‐of‐the‐art carving algorithm for flow network derivation in a low‐relief, agricultural landscape characterized by a large number of spurious, topographic depressions. Our results show that the investigated algorithm reconstructs a benchmark network insufficiently in terms of carving energy, distance and a topological network measure. The modification to the algorithm that performed best, combines the least‐cost auxiliary topography (LCAT) carving with a constrained breaching algorithm that explicitly takes automatically identified channel locations into account. We applied our methods to a low relief landscape, but the results can be transferred to flow network derivation of DEMs in moderate to mountainous relief in situations where the valley bottom is broad and flat and precise derivations of the flow networks are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The space and time resolutions used for the input variables of a distributed hydrological model have a sufficient impact on the model results. This resolution depends on the required accuracy, experimental site and the processes and variables taken into account in the hydrological model. The influence of space and time resolution is studied here for the case of TOPMODEL, a model based on the variable contributing area concept, applied to an experimental 12 km2 catchment (Coët-Dan, Brittany, France) during a two month winter period. A sensitivity analysis to space and time resolution is performed first for input variables derived from the digital elevation data, secondly for the optimized values of the TOPMODEL parameters and finally for modelling efficiency. This analysis clearly shows that a relevant domain of space and time resolutions where efficiency is fairly constant can be defined for the input topographic variables, as opposed to another domain of larger resolutions that induces a strong decrease of modelling efficiency. It also shows that the use of a single set of parameters, defined as mean values of parameters on this relevant domain of resolution, does not modify the accuracy of modelling. The sensitivity of the parameters to space and time resolution allows the physical significance of the parameter values to be discussed.  相似文献   

12.
With the introduction of high‐resolution digital elevation models, it is possible to use digital terrain analysis to extract small streams. In order to map streams correctly, it is necessary to remove errors and artificial sinks in the digital elevation models. This step is known as preprocessing and will allow water to move across a digital landscape. However, new challenges are introduced with increasing resolution because the effect of anthropogenic artefacts such as road embankments and bridges increases with increased resolution. These are problematic during the preprocessing step because they are elevated above the surrounding landscape and act as artificial dams. The aims of this study were to evaluate the effect of different preprocessing methods such as breaching and filling on digital elevation models with different resolutions (2, 4, 8, and 16 m) and to evaluate which preprocessing methods most accurately route water across road impoundments at actual culvert locations. A unique dataset with over 30,000 field‐mapped road culverts was used to assess the accuracy of stream networks derived from digital elevation models using different preprocessing methods. Our results showed that the accuracy of stream networks increases with increasing resolution. Breaching created the most accurate stream networks on all resolutions, whereas filling was the least accurate. Burning streams from the topographic map across roads from the topographic map increased the accuracy for all methods and resolutions. In addition, the impact in terms of change in area and absolute volume between original and preprocessed digital elevation models was smaller for breaching than for filling. With the appropriate methods, it is possible to extract accurate stream networks from high‐resolution digital elevation models with extensive road networks, thus providing forest managers with stream networks that can be used when planning operations in wet areas or areas near streams to prevent rutting, sediment transport, and mercury export.  相似文献   

13.
We have developed a flood water level estimation method that only employs satellite images and a DEM. The method involves three steps: (1) discriminating flood areas and identifying clumps of each flood area, (2) extracting the edges of the identified flood area using a buffering technique, and (3) performing spatial interpolation to transform the extracted elevation to flood water levels. We compared the estimated flood water levels with the observed ones. The RMSE using the RADARSAT was 1.99 and 1.30 m at river and floodplain points, respectively, whereas the RMSE using the MODIS was 4.33 and 1.33 m at the river and floodplain points, respectively. Given that most errors are attributed to the DEM, the method exhibited good performance. Furthermore, the method reproduced the flow directions and flood water level changes during the flooding period. Thus, we demonstrated that the characteristics of flood inundation can be understood even when ground observation data cannot be obtained.  相似文献   

14.
15.
16.
17.
18.
Surface water storage—including wetlands and other small waterbodies—has largely been disregarded in traditional hydrological models. In this paper, the grid resampling method is adopted to study the influence of the digital elevation model (DEM) grid resolution on depression storage (DS) considering different rainfall return periods. It is observed that the DEM grid size highly affects DS, and the higher the grid resolution is, the larger the DS value. However, when the grid resolution reaches a certain value, the maximum DS value decreases. This suggests that a critical grid resolution value exists at which the water storage capacity of depressions is maximized, namely, 20 m in this work (except for the overall area simulation under infiltration). This phenomenon is further verified in two test cases with and without the infiltration process, that is, calculations of the local area and without infiltration area, respectively. This research may facilitate the accurate computation of the DS process, which is greatly affected by the grid resolution, thereby improving the reliability of hydrological models.  相似文献   

19.
Quasi‐planar morphological surfaces may become dissected or degraded with time, but still retain original features related to their geologic‐geomorphic origin. To decipher the information hidden in the relief, recognition of such features is required, possibly in an automated manner. In our study, using Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), an existing algorithm has been adapted to recognize quasi‐planar features fulfilling specified criteria. The method has been applied to a study area of the Central Andes with Miocene to Quaternary volcanic edifices, tilted ignimbrite surfaces, and basin‐filling sediments. The result is a surface segmentation, whereas non‐planar features (gullies, tectonic faults, etc.) are sorted out. The main types of geomorphic features that can be distinguished and interpreted are as follows. (1) The west‐dipping western margin of the Altiplano is differentiated into segments of the lower sedimentary cover that of increased erosion by tectonic steepening at intermediate levels, and an upper plane with limited erosion. (2) In the central part of the Western Cordillera, the Oxaya ignimbrite block shows a ‘striped’ bulging pattern that results from a smoothly changing surface dip. This pattern is due to continuous folding/warping of the ignimbrite block possibly related to gravitational movements. (3) To the west, large, uniform planes correspond to flat, smooth, tectonically undisturbed surfaces of young sedimentary cover of the Central Basin. (4) The evolution of Taapaca volcanoes with sector collapse events and cone‐building phases is shown by several segments with overlapping clastic aprons. (5) To the east, on the western margin of the Altiplano, young intermontane basins filled by Upper Miocene sediments show progressively increasing dip toward basin margins, reflected by a circular pattern of the segmentation planes. We show that the segmentation models provide meaningful images and additional information for geomorphometric analysis that can be interpreted in terms of geological and surface evolution models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Distributed hydrological models require a detailed definition of a watershed's internal drainage structure. The conventional approach to obtain this drainage structure is to use an eight flow direction matrix (D8) which is derived from a raster digital elevation model (DEM). However, this approach leads to a rather coarse drainage structure when monitoring or gauging stations need to be accurately located within a watershed. This is largely due to limitations of the D8 approach and the lack of information over flat areas and pits. The D8 approach alone is also unable to differentiate lakes from plain areas.

To avoid these problems a new approach, using a digital river and lake network (DRLN) as input in addition to the DEM, has been developed. This new approach allows for an accurate fit between the DRLN and the modelled drainage structure, which is represented by a flow direction matrix and a modelled watercourse network. More importantly, the identification of lakes within the modelled network is now possible. The proposed approach, which is largely rooted in the D8 approach, uses the DRLN to correct modelled flow directions and network calculations. For DEM cells overlapped by the DRLN, flow directions are determined using DRLN connections only. The flow directions of the other DEM cells are evaluated with the D8 approach which uses a DEM that has been modified as a function of distance to the DRLN.

The proposed approach has been tested on the Chaudière River watershed in southern Québec, Canada. The modelled watershed drainage structure showed a high level of coherence with the DRLN. A comparison between the results obtained with the D8 approach and those obtained by the proposed approach clearly demonstrated an improvement over the conventionally modelled drainage structure. The proposed approach will benefit hydrological models which require data such as a flow direction matrix, a river and lake network and sub-watersheds for drainage structure information.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号