首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of present study was to improve compost quality as well as to achieve an optimum C/N ratio in compost, reduction in heavy metal content and increased water‐holding capacity of composting piles in arid areas. Four windrow compost piles were prepared by mixing sawdust at various dosages with municipal solid waste (MSW). The sawdust was mixed with MSW at 0% (MSW0), 16% (MSW16), 32% (MSW32), and 70% (MSW70) on dry weight basis. The compost piles were monitored daily by recording the temperature, while, weekly measurement was done on C/N ratio, moisture, pH, and electrical conductivity (EC). The addition of 16% sawdust increased the initial C/N to the optimum level and decreased N loss during the composting process. The MSW16 and MSW32 exhibited better temperature dynamics and their composting period seemed to be shorter than that of MSW0 and MSW70. Moreover, addition of sawdust caused lowering of moisture loss from the composting piles. Sawdust admixtures also produced lowering of pH and EC values and led to lower heavy metal content in final products. The quality of the final compost makes it possible to propose the use of this experimental procedure for building up a novel mass reduction of the initial composted waste mixtures.  相似文献   

2.
Ng QY  Chan AH  Ma SW 《Marine pollution bulletin》2008,57(6-12):381-391
Composting is one of the waste disposal methods adopted for disposal of livestock waste in Hong Kong. The composting livestock waste normally undergoes 6-8 weeks fermentation, followed by 16-20 weeks maturation. The matured compost is sold as soil conditioner in the local market. In 2006, feedstock material and a time-series of compost samples were collected throughout the fermentation and maturation process from the Sha Ling Composting Plant in the New Territories. The feedstock material and compost samples were analyzed for contents of three unintentional persistent organic pollutants (POPs), i.e. dioxins/furans, dioxin-like PCBs and total PCBs. These POPs are unintentionally produced by-products of chemical industrial processes and combustion processes. Selected heavy metals were also analyzed, which served as conservative tracers to determine potential mass loss during the composting process. Levels of contamination by these POPs were found to be low in the matured compost for sale. The mean concentrations (lower-upper bound) of total dioxins/furans, total dioxin-like PCBs and total PCBs were 2.01-2.05 ng I-TEQ/kg dw, 0.04-0.05 ng WHO-TEQ/kg dw and 1.55-1.55 microg/kg dw, respectively. Progressively elevated levels of these POPs were observed in the compost samples during the fermentation process. Analysis of the congener profiles revealed that the heptaCDD and octaCDD were the main contributors to the observed increase in dioxin/furan content. The possible sources of dioxins/furans in the compost were discussed. The study results established a local dioxins/furans emission factor specific to the trade and provided a better estimate of the annual dioxins/furans emission for the livestock waste composting activity in Hong Kong.  相似文献   

3.
The properties and transformation of dissolved organic matter (DOM) extracted (10 L water per kilogram compost) from municipal solid waste (MSW) compost at five stages (days 47, 77, 105, 126, and 187) of composting were investigated. The DOM was fractionated into hydrophobic or hydrophilic neutrals, acids, and bases. The unfractionated DOM, the hydrophobic acids and neutrals (HoA and HoN, respectively), and the hydrophilic neutrals (HiN) fractions were studied using solid-state 13C-NMR, FTIR, and DRIFT spectroscopy. The HoA fraction was found to be the dominant (percentage of total DOM) hydrophobic fraction, exhibiting a moderate increase during composting. The HoN fraction increased sharply from less than 1% to 18% of the total DOM during 187 days of composting, while the hydrophobic bases (HoB) exhibited the opposite trend. The HiN represented the major fraction of the hydrophiles up to 120 days of composting, decreasing thereafter by 38%. The relative concentration of the hydrophilic acids and bases (HiA and HiB, respectively) exhibited no consistent trend during composting. DRIFT spectra of the unfractionated DOM taken from the composting MSW revealed a decreasing level of polysaccharide structures with time. The 13C-NMR and FTIR spectra of the HoA fraction exhibited a polyphenol-humic structure, whereas the HoN spectra exhibited strong aliphatic features. The spectra of the HiN fraction confirmed its polysaccharide nature. During the final stage of composting, the DOM concentration was steady, while a relative decrease of HiN concomitant with an increase of HoA and HoN fractions was observed. These indicate that the DOM contained a low concentration of biodegradable organic matter and a higher content of macromolecules related to humic substances. The biological significance and heavy metal binding of these fractions are being studied based on earlier observations showing enhanced plant growth in the presence of DOM extracted from mature as opposed to immature compost.  相似文献   

4.
Composting is one of the waste disposal methods adopted for disposal of livestock waste in Hong Kong. The composting livestock waste normally undergoes 6–8 weeks fermentation, followed by 16–20 weeks maturation. The matured compost is sold as soil conditioner in the local market. In 2006, feedstock material and a time-series of compost samples were collected throughout the fermentation and maturation process from the Sha Ling Composting Plant in the New Territories. The feedstock material and compost samples were analyzed for contents of three unintentional persistent organic pollutants (POPs), i.e. dioxins/furans, dioxin-like PCBs and total PCBs. These POPs are unintentionally produced by-products of chemical industrial processes and combustion processes. Selected heavy metals were also analyzed, which served as conservative tracers to determine potential mass loss during the composting process. Levels of contamination by these POPs were found to be low in the matured compost for sale. The mean concentrations (lower–upper bound) of total dioxins/furans, total dioxin-like PCBs and total PCBs were 2.01–2.05 ng I-TEQ/kg dw, 0.04–0.05 ng WHO-TEQ/kg dw and 1.55–1.55 μg/kg dw, respectively. Progressively elevated levels of these POPs were observed in the compost samples during the fermentation process. Analysis of the congener profiles revealed that the heptaCDD and octaCDD were the main contributors to the observed increase in dioxin/furan content. The possible sources of dioxins/furans in the compost were discussed. The study results established a local dioxins/furans emission factor specific to the trade and provided a better estimate of the annual dioxins/furans emission for the livestock waste composting activity in Hong Kong.  相似文献   

5.
《Marine pollution bulletin》2009,58(6-12):381-391
Composting is one of the waste disposal methods adopted for disposal of livestock waste in Hong Kong. The composting livestock waste normally undergoes 6–8 weeks fermentation, followed by 16–20 weeks maturation. The matured compost is sold as soil conditioner in the local market. In 2006, feedstock material and a time-series of compost samples were collected throughout the fermentation and maturation process from the Sha Ling Composting Plant in the New Territories. The feedstock material and compost samples were analyzed for contents of three unintentional persistent organic pollutants (POPs), i.e. dioxins/furans, dioxin-like PCBs and total PCBs. These POPs are unintentionally produced by-products of chemical industrial processes and combustion processes. Selected heavy metals were also analyzed, which served as conservative tracers to determine potential mass loss during the composting process. Levels of contamination by these POPs were found to be low in the matured compost for sale. The mean concentrations (lower–upper bound) of total dioxins/furans, total dioxin-like PCBs and total PCBs were 2.01–2.05 ng I-TEQ/kg dw, 0.04–0.05 ng WHO-TEQ/kg dw and 1.55–1.55 μg/kg dw, respectively. Progressively elevated levels of these POPs were observed in the compost samples during the fermentation process. Analysis of the congener profiles revealed that the heptaCDD and octaCDD were the main contributors to the observed increase in dioxin/furan content. The possible sources of dioxins/furans in the compost were discussed. The study results established a local dioxins/furans emission factor specific to the trade and provided a better estimate of the annual dioxins/furans emission for the livestock waste composting activity in Hong Kong.  相似文献   

6.
Inorganic industrial waste landfills have the potential to contaminate subsurface groundwater supplies through migration of leachates down to the water table and into groundwater aquifers, despite the use of compacted low permeability clay or polyethene liners. This paper aims the removal of Cu2+ and Zn2+ in the leachate from an industrial waste landfill using natural materials (natural zeolite, expanded vermiculite, pumice, illite, kaolinite, and bentonite) as a liner material. Cu2+ and Zn2+ concentrations for all treatments decreased during the process. Of all the different natural materials, natural zeolite, expanded vermiculite and pumice, with bentonite, were effective in removing Cu2+ and Zn2+ present in the leachate. However, the use of illite and kaolinite with bentonite as liner materials could be of disadvantage in Cu2+ and Zn2+ removal from leachate. The adsorption kinetic models were also tested for the validity. The second order kinetics with the high correlation coefficients best described adsorption kinetic data.  相似文献   

7.
Composts with five different ratios of agricultural wastes, viz. rice straw (RS), wheat straw (WS), potato plant (PP), and mustard stover (MS) were prepared with or without fish pond bottom sediment to investigate the compost maturity and their suitability for field application. The composting process was monitored through the changes in physico‐chemical parameters and germination index (GI) at every 7 days interval of the composting process. All the composts were dark brown and smelled like forest soil within 56 days of composting, which reflected its matured status. On the basis of the physico‐chemical parameters (bulk density: 0.84 g/cm3; pH 7.05; electrical conductivity: 3.52 mS/cm; cation exchange capacity:82.4 cmol/kg; total carbon:321.4 g/kg; total nitrogen: 16.9 g/kg; As: 6.8 mg/kg; Cd: 2.96 mg/kg; Cr: 29.6 mg/kg, Cu: 243.6 mg/kg; Hg: 0.019 mg/kg; Ni: 24.3 mg/kg; Pb: 62.1 mg/kg and Zn: 812 mg/kg) and GI (89–96%), it could be concluded that RS/WS/PP/MS, 1:1:2:1 v/v/v/v with fish pond sediment produced better compost in accordance with the Indian compost standard. Application of a combined randomized block design analysis revealed that there is a significant difference in the responses of the five composts, in relation to the time of composting. Hierarchical clustering algorithm was applied with a view to form homogeneous groups of five different composts on the basis of different physico‐chemical parameters. Therefore, the ratio of waste incorporation is an important decision for composting and addition of pond sediment can improve the quality of compost.  相似文献   

8.
Anaerobically stabilized sludge from wastewater treatment is always a challenge from the environmental aspect of management. The agrarian environmental surroundings present a possibility for swift and efficient utilization of compost from anaerobically stabilized sludge in order to increase the quality of the biological product. With intensification of the composting procedure by means of the microbiological consortium Geocell‐1 (Cellvibrio sp., Pseudomonas fluorescens with the addition of micro‐ and macro‐elements), the results show that the compost obtained from stabilized sludge after inoculation is significantly improved in terms of moisture reduction (39–43%), while in the control compost, this value is significantly higher with 61%. The results of the pathogenic effect show a significant reduction in the number of fecal coliform (<1 × 103) and Enterococcus bacteria (<1 × 104) in the inoculated (treated) compost. With a slight decrease in the concentration of limiting factors such as As, Cd, Cu, a quality biological product can be achieved, which can be safely deposited on soil. The phytotoxicological germination test with white mustard (Sinapis alba) shows a higher number of sprouting plants with a mixture of treated compost and standard soil for flowers 1:1 and 1:4 compared to the control group.  相似文献   

9.
Spectroscopic Characterization of Compost at Different Maturity Stages   总被引:1,自引:0,他引:1  
We studied the physicochemical and molecular changes of compost during its maturation within 60, 90, and 150 days after the composting process. Moreover, the changes were also studied in compost residues after sequential removal of lipidic compounds. Infrared DRIFT spectrometry and 13C‐CPMAS‐NMR spectroscopy indicate that the molecular composition of compost changes dramatically during the stabilization period. The most decomposable components, mainly represented by bioavailable lipidic and peptidic structures, were progressively mineralized passing from 60 days to longer periods of compost stabilization. At increasing maturity stages, the composition of organic matter underwent a progressive enrichment in stable hydrophobic and ligno‐cellulosic material. The sequential extraction of lipidic compounds allowed an improved characterization of substrates and confirmed the outlined progressive transformation of compost. Compost may well be chosen on the basis of selected characteristics for environmental applications.  相似文献   

10.
The Geochemistry of Boron in a Landfill Monitoring Program   总被引:1,自引:0,他引:1  
Ground water monitoring data collected during the past eight years at a permitted municipal solid waste (MSW) disposal facility located in the midwestern United States indicated fluctuations in typical leachate indicator parameter concentrations. Apparent trends in the data inferred leachate outbreak, generating suspicion as to the integrity of the landfill liner. Eight ground water monitoring wells were installed in three distinct geologic units at the landfill facility, including glacial drift, silurian dolomite, and a post-glacial peat fen, which is downgradient from the landfill. Piezometer nests were used to define ground water gradients at the site. Using boron as an indicator, the occurrence of analytes of concern in the downgradient monitoring wells were shown to be indicative of the natural geochemistry of site ground water. This work emphasizes the importance of understanding site hydrogeology during the interpretation of ground water quality data.  相似文献   

11.
A distributed model of municipal solid waste decomposition is proposed. The main model parameters are concentrations of municipal solid waste, volatile fatty acids, and the biomass of methane-producing microorganisms. Numerical analysis of the model is made. Diffusion of fatty acids in leachate, which facilitates the formation of anaerobic conditions, is shown to cause the formation of concentration chemical waves propagating in the space. The area of initiation methane production is found to expand.  相似文献   

12.
A superiority-inferiority-based inexact fuzzy-stochastic chance-constrained programming (SI-IFSCCP) approach is developed for supporting long-term municipal solid waste management under uncertainty. Through SI-IFSCCP, multiple uncertainties expressed as intervals, possibilistic and probabilistic distributions, as well as their combinations, could be directly communicated into the optimization process, leading to enhanced system robustness. Through tackling fuzziness and two-layer randomness, various subjective judgments of many stakeholders with different interests and preferences could be extensively reflected, guaranteeing a lower degree of biases during data sampling and a higher degree of public acceptance for the generated plans. Two levels of system-violation risk could also be reflected by SI-IFSCCP, reflecting the relationship between economic efficiency and system reliability. A two-step solution method with improved computational efficiency is proposed for SI-IFSCCP. To demonstrate its applicability, the developed methodology is then applied to a long-term municipal solid waste management problem. Useful solutions have been generated. Satisfactory waste flow plans could be identified according to system conditions and policy inclination, supporting in-depth tradeoff analyses between system optimality and reliability as well as between economic and environmental objectives.  相似文献   

13.
Clinoptilolite, a natural zeolite is efficient for removing ammonia from water. The use of natural zeolites deposited at Ni?ný Hrabovec, ?SSR, for ammonia removal from model solutions is studied under various conditions: pH, temperature, hydrodynamic regime, zeolite-modification. The optimal ion exchange conditions, the equilibrium and capacity data in real waste water of ?SSR-clinoptilolite tuff were investigated.  相似文献   

14.
There has been considerable debate regarding the chemical characterization of landfill leachate in general and the comparison of various types of landfill leachate (e.g., hazardous, codisposal, and municipal) in particular. For example, the preamble to the U.S. EPA Subtitle D regulation (40 CFR Parts 257 and 258) suggests that there are no significant differences between the number and concentration of toxic constituents in hazardous versus municipal solid waste landfill leachate. The purpose of this paper is to statistically test this hypothesis in a large leachate database comprising 1490 leachate samples from 283 sample points (i.e., monitoring location such as a leachate sump) in 93 landfill waste cells (i.e., a section of a facility that took a specific waste slream or collection of similar waste streams) from 48 sites with municipal, codisposal, or hazardous waste site histories. Results of the analysis reveal clear differention between landfill leachate types, both in terms of constituents detected and their concentrations. The result of the analysis is a classification function that can estimate the probability that new leachate or ground water sample was produced by the disposal of municipal, codisposal, or hazardous waste. This type of computation is illustrated, and applications of the model to Superfund cost-allocation problems are discussed.  相似文献   

15.
Abstract

As the urban population of the world increases and demand on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analysing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.  相似文献   

16.
An inexact stochastic mixed integer linear semi-infinite programming (ISMISIP) model is developed for municipal solid waste (MSW) management under uncertainty. By incorporating stochastic programming (SP), integer programming and interval semi-infinite programming (ISIP) within a general waste management problem, the model can simultaneously handle programming problems with coefficients expressed as probability distribution functions, intervals and functional intervals. Compared with those inexact programming models without introducing functional interval coefficients, the ISMISIP model has the following advantages that: (1) since parameters are represented as functional intervals, the parameter’s dynamic feature (i.e., the constraint should be satisfied under all possible levels within its range) can be reflected, and (2) it is applicable to practical problems as the solution method does not generate more complicated intermediate models (He and Huang, Technical Report, 2004; He et al. J Air Waste Manage Assoc, 2007). Moreover, the ISMISIP model is proposed upon the previous inexact mixed integer linear semi-infinite programming (IMISIP) model by assuming capacities of the landfill, WTE and composting facilities to be stochastic. Thus it has the improved capabilities in (1) identifying schemes regarding to the waste allocation and facility expansions with a minimized system cost and (2) addressing tradeoffs among environmental, economic and system reliability level.  相似文献   

17.
In this research, approaches of interval mathematical programming, two-stage stochastic programming and conditional value-at-risk (CVaR) are incorporated within a general modeling framework, leading to an interval-parameter mean-CVaR two-stage stochastic programming (IMTSP). The developed method has several advantages: (i) it can be used to deal with uncertainties presented as interval numbers and probability distributions, (ii) its objective function simultaneously takes expected cost and system risk into consideration, thus, it is useful for helping decision makers analyze the trade-offs between cost and risk, and (iii) it can be used for supporting quantitatively evaluating the right tail of distributions of waste generation rate, which can better quantify the system risk. The IMTSP model is applied to the long-term planning of municipal solid waste management system in the City of Regina, Canada. The results indicate that IMTSP performs better in its capability of generating a series of waste management patterns under different risk-aversion levels, and also providing supports for decision makers in identifying desired waste flow strategies, considering balance between system economy and environmental quality.  相似文献   

18.
Abstract

The River Kali in western Uttar Pradesh, India is a typical water course for untreated municipal and industrial effluents. The river receives considerable amounts of waste every day from the industries and municipal area of Muzaffarnagar town. Agricultural runoff is the other major factor in pollution of the river water. The mass balance calculations conducted on the river reach indicate that nitrate and phosphate from the non-point sources constitute 32.4 and 11.2% of the total load, respectively. The resulting differential loading, if adjusted for uncharacterized non-point contribution to the load, may represent the total point sources load to the river minus any losses due to volatilization, settling, and/or degradation. Indirect monitoring using upstream/downstream sampling locations provides a viable alternative to conventional methods for measuring the changes in the concentration and/or load to the river.  相似文献   

19.
无机盐改性对沸石覆盖技术控制底泥氮磷释放的影响研究   总被引:5,自引:0,他引:5  
通过试验,考察了无机盐改性对沸石覆盖控制底泥氮磷释放效果的影响,并对沸石覆盖技术控制底泥氮磷释放的机理进行初步探讨,结果表明:①NaCl及CaCl2改性对沸石吸附氨氮的性能影响不大;CaCl2改性可以提高沸石Ca2 的交换量而降低Na 的交换量,NaCl改性则可以明显降低Ca2 的交换量和增加Na 的交换量.②NaCl及CaCl2改性对沸石覆盖技术控制底泥氨氮的释放影响不大,而对控制底泥磷的释放则影响较大,沸石覆盖控制底泥磷释放效率从大到小依次为CaCl2改性沸石>天然沸石>NaCl改性沸石.③沸石覆盖技术控制底泥氨氮释放的机理为沸石的物理吸附和阳离子交换作用,控制底泥磷释放的机理包括沸石的机械阻挡作用和沸石与铵所交换出来的Ca2 对磷酸盐的固定作用.  相似文献   

20.
The Golden Horn was once a recreation area and supported a fishery; now it is an open sewer. It receives untreated domestic sewage from a population of more than 600,000 and large volumes of industrial waste. This survey documents the problem and indicates the remedial measures that are needed and envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号