首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work deals with analysis of hydrographic observations and results of numerical simulations. The data base includes acoustic Doppler current profilers (ADCP) observations, continuous measurements on data stations and satellite data originating from the medium resolution imaging spectrometer (MERIS) onboard the European Space Agency (ESA) satellite ENVISAT with a spatial resolution of 300 m. Numerical simulations use nested models with horizontal resolutions ranging from 1 km in the German Bight to 200 m in the East Frisian Wadden Sea coupled with a suspended matter transport model. Modern satellite observations have now a comparable horizontal resolution with high-resolution numerical model of the entire area of the East Frisian Wadden Sea allowing to describe and validate new and so far unknown patterns of sediment distribution. The two data sets are consistent and reveal an oscillatory behaviour of sediment pools to the north of the back-barrier basins and clear propagation patterns of tidally driven suspended particulate matter outflow into the North Sea. The good agreement between observations and simulations is convincing evidence that the model simulates the basic dynamics and sediment transport processes, which motivates its further use in hindcasting, as well as in the initial steps towards forecasting circulation and sediment dynamics in the coastal zone.  相似文献   

2.
Images from specially-commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure-from-Motion (SfM) techniques and application of a depth-brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near-bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is presented and analysis suggests a depth-brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low-turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near-equivalence in sediment flux. Hence, reach-based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low-turbidity rivers that currently have sparse information on bedload sediment transport rates. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

3.
Multiple intertidal bars and troughs, often referred to as ‘ridges and runnels’, are significant features on many macrotidal sandy beaches. Along the coastline of England and Wales, they are particularly prevalent in the vicinity of estuaries, where the nearshore gradient is gentle and a large surplus of sediment is generally present. This paper examines the dynamics of such bar systems along the north Lincolnshire coast. A digital elevation model of the intertidal morphology obtained using LIDAR demonstrates that three to five intertidal bars are consistently present with a spacing of approximately 100 m. The largest and most pronounced bars (height = 0·5–0·8 m) are found around mean sea level, whereas the least developed bars (height = 0·2–0·5 m) occur in the lower intertidal zone. Annual aerial photographs of the intertidal bar morphology were inspected to try to track individual bars from year to year to derive bar migration rates; however, there is little resemblance between concurrent photographs, and ‘resetting’ of the intertidal profile occurs on an annual basis. Three‐dimensional beach surveys were conducted monthly at three locations along the north Lincolnshire coast over a one‐year period. The intertidal bar morphology responds strongly to the seasonal variation in the forcing conditions, and bars are least numerous and flattest during the more energetic winter months. Morphological changes over the monthly time scale are strongly affected by longshore sediment transport processes and the intertidal bar morphology can migrate along the beach at rates of up to 30 m per month. The behaviour of intertidal bars is complex and varies over a range of spatial and temporal scales in response to a combination of forcing factors (e.g. incident wave energy, different types of wave processes, longshore and cross‐shore sediment transport), relaxation time and morphodynamic feedback. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Experimentally determined spatial patterns of soil redistribution across a break in slope derived using 10 rare earth element (REE) oxides as sediment tracers are presented. An erosion experiment was conducted using simulated rainfall within a laboratory slope model measuring 2·5 m wide by 6 m long with a gradient of 15° declining to 2°. Soil was tagged with multiple REE and placed in different locations over the slope and at the end of the experiment REE concentrations were measured in samples collected spatially. A new method was developed to quantify the erosion and deposition depths spatially, the relative source contributions to deposited sediment and the sediment transport distances. Particle‐size selectivity over an area of net deposition was also investigated, by combining downslope changes in particle‐size distributions with changes in sediment REE composition within a flow pathway. During the experiment, the surface morphology evolved through upslope propagation of rill headcuts, which gradually incised the different REE‐tagged zones and led to sediment deposition at the break in slope and the development of a fan extending over the shallow slope segment. The spatial patterns in REE concentrations, the derived erosion and deposition depths, the relative source contributions to deposition zones and the sediment transport distances, corroborate the morphological observations and demonstrate the potential of using REE for quantifying sediment transport processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Aeolian processes – the erosion, transport, and deposition of sediment by wind – play important geomorphological and ecological roles in drylands. These processes are known to impact the spatial patterns of soil, nutrients, plant-available water, and vegetation in many dryland ecosystems. Tracers, such as rare earth elements and stable isotopes have been successfully used to quantify the transport and redistribution of sediment by aeolian processes in these ecosystems. However, many of the existing tracer techniques are labor-intensive and cost-prohibitive, and hence simpler alternative approaches are needed to track aeolian redistribution of sediments. To address this methodological gap, we test the applicability of a novel metal tracer-based methodology for estimating post-fire aeolian sediment redistribution, using spatio-temporal measurements of low-field magnetic susceptibility (MS). We applied magnetic metal tracers on soil microsites beneath shrub vegetation in recently burned and in control treatments in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate a spatially homogeneous distribution of the magnetic tracers on the landscape after post-burn wind erosion events. MS decreased after wind erosion events on the burned shrub microsites, indicating that these areas functioned as sediment sources following the wildfire, whereas they are known to be sediment sinks in the undisturbed (e.g. not recently burned) ecosystem. This experiment represents the first step toward the development of a cost-effective and non-destructive tracer-based approach to estimate the transport and redistribution of sediment by aeolian processes. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Modelling mean annual sediment yield using a distributed approach   总被引:3,自引:0,他引:3  
In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10–5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Wood plays an important role in stream ecology and geomorphology. Previous studies of wood in rivers have quantified spatial distributions but temporal dynamics remain poorly documented. The lack of such data is related to limitations of existing methods, especially when applied to large rivers. Five techniques are field‐tested to assess their utility for quantifying the temporal dynamics in rivers: repeated high‐resolution aerial surveys, the measurement of wood physical characteristics as proxies for 14C dating, passive and active radio frequency identification (RFID) tags, radio transmitters, and video. The spatial distribution of wood is surveyed using aerial imagery with a resolution finer than 0·10 m. The estimation of temporal trends by repeated aerial‐based surveys needs to consider vegetation growth and hiding. Wood residence times can be calculated using 14C analysis, but the assessment of wood physical characteristics including decay status and wood density offers a cheaper, if less accurate, alternative. Wood resistance to penetration is tested but results are not significant. Radio transmitters are reliable for multi‐year (~5 year) surveys and can be detected at 800 m. Passive RFID tags are limited by a read range of 0·30 m but are reliable for longer term (>5 year) studies. Active RFID tags combine a moderate read range (10–300 m) and low cost with in‐flood detection but require more testing. Video monitoring of wood passing on the surface of a river is successfully implemented. For a single flood on the Ain River (France), wood transport rates are an order of magnitude higher on the rising limb of the hydrograph than on the falling limb. Overall, the techniques improve the ability to gather the data needed to understand wood transfer processes and calibrate budgets of wood in rivers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Unsuccessful attempts to use process‐scale models to predict long‐term aeolian sediment transport patterns have long been a feature of aeolian research. It has been proposed that one approach to overcome these problems is to identify micro‐scale variables that are important at longer timescales. This paper assesses the contribution of two system variables (secondary airflow patterns and fetch distance) to medium‐term (months to years) dune development. The micro‐scale importance of these variables had been established during previous work at the site (Magilligan Strand, Northern Ireland). Three methods were employed. First, sand drift potentials were calculated using 2 years of regional wind data and a sediment transport model. Second, wind data and large trench traps (2 m length × 1 m width × 1·5 m depth) were used to assess the actual sediment transport patterns over a 2‐month period. Third, a remote‐sensing technique for the identification of fetch distance, a saltation impact sensor (Safire) and wind data were utilized to gauge, qualitatively, sediment transport patterns over a 1‐month period. Secondary airflow effects were found to play a major role in the sediment flux patterns at these timescales, with measured and predicted rates matching closely during the trench trap study. The results suggest that fetch distance is an unimportant variable at this site. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The fate of mud in an estuary over an entire year was unravelled using complementary, independent, spatially explicit techniques. Sequential ERS-2 SAR and Envisat MERIS-FR data were used to derive synoptic changes in intertidal bottom mud and suspended particulate matter (SPM) in the top of the water column, respectively. These satellite data were combined with in situ measurements and with a high resolution three-dimensional cohesive sediment model, simulating mud transport, resuspension, settling and deposition under the influence of tides, wind, waves and freshwater discharge. The spatial distribution of both bottom mud and SPM as observed by in situ and satellite techniques was largely explained by modelled estuarine circulation, tidal and wind-induced variations in vertical mixing and horizontal advection. The three data sources also showed similar spring-neap and seasonal variations in SPM (all factor 1.5 to 2), but semi-diurnal tidal variations were underestimated by the model. Satellite data revealed that changes in intertidal bottom mud were spatially heterogeneous, but on average mud content doubled during summer, which was confirmed by in situ data. The model did not show such seasonal variation in bed sediment, suggesting that seasonal dynamics are not well explained by the physical factors presently implemented in the model, but may be largely attributed to other (internal) factors, including increased floc size in summer, temporal stabilisation of the sediment by microphytobenthos and a substantially lower roughness of the intertidal bed in summer as observed by the satellite. The effects of such factors on estuarine mud dynamics were evaluated.  相似文献   

11.
The RS‐tempQ Model ( r each– s cale t emporary flow biogeochemical model) is a conceptual model that can describe the hydrologic, sediment transport and biogeochemical processes of temporary rivers at the reach scale. The model takes into account the expansion–contraction of the inundated area of the river. It simulates the sediment transport and the nutrient fluxes that are transferred to the coastal area due to the first flash flood and during extreme rain events. The RS‐tempQ Model simulates the in‐stream processes during the wet and dry cycles as the river corridor expands and contracts. The model was used to assess and quantify the hydrologic and geochemical processes occurring in a temporary river reach (Krathis River) in Greece. Since the conventional gauging techniques cannot measure the flow in rivers that are split into small braided streams, discharge measurements could not be obtained in order to calibrate and verify the model. Other field measurements such as infiltration losses and sediment accumulation were used for model calibration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Little is known about the spatial and temporal scales of variation in aeolian processes. Studies that aim to investigate surface erodibility often sample aeolian sediment transport at the nodes of a regular grid of arbitrary size. Few aeolian transport investigations have the resources to obtain sufficient samples to produce reliable models for mapping the spatial variation of transport. This study reports the use of an innovative nested strategy for sampling multiple spatial scales simultaneously using 40 sediment samplers. Reliable models of the spatial variation in aeolian sediment transport were produced and used for ordinary punctual kriging and stochastic simulated annealing to produce maps for several wind erosion events over a 25 km2 playa in western Queensland, Australia. The results support the existence of a highly dynamic wind erosion system that was responding to possibly cyclic variation in the availability of material and fluctuations in wind energy. The spatial scale of transport was considerably larger than the small scale expected of the factors controlling surface erodibility. Thus, it appears that transport cannot be used as a surrogate of erodibility at the scale of this investigation. Simulation maps of transport provided considerably more information than those from kriging about the variability in aeolian sediment transport and its possible controlling factors. The proposed optimal sampling strategy involves a nested approach using ca 50 samplers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A series of controlled laboratory experiments were conducted in order to obtain precise data on the hydraulic and sediment transport conditions during rill formation. Tests were carried out using a crusting-prone binary mixed soil in a 15 m long flume at an average slope of 0·087 under simulated rainfall. Rainfall intensities varied from 30–35 mm h?1 and developed about 70 per cent of the kinetic energy of natural rainfall of similar intensity. Runoff and sediment discharge measured at the downstream weir were strongly influenced by rill forming processes. Essentially, rill incision reduced runoff discharge as a result of increased percolation in rill channels but increased sediment discharge. Secondary entrainment processes, such as bank collapse, also increased sediment discharge at the weir. Knickpoint bifurcation and colluvial deposition, however, decreased sediment discharge. Rills always developed through the formation of a knickpoint. The critical condition for knickpoint initiation was the development of supercritical flow and waves which mould and incise the bed. Prior smoothing of the soil surface by entrainment and redistribution of sediment facilitated supercritical flow. Statistical analysis showed that hydraulic and sediment transport conditions differed significantly in rilled and unrilled flows. The relationship between sediment discharge, rill erosion, and flow hydraulics was found to be nonlinear, conforming to a standard power function in the form y = axb. Rills were also associated with significantly increased sediment transport capacities. However, rill initiation was not clearly defined by any specific hydraulic threshold. Instead, rilled and unrilled flows were separated by zones of transition within which both types of flow occur.  相似文献   

14.
Many of the world's beaches have recently been eroding, even on progradational landforms. This study uses the sediment budget approach to identify and rank the causes of the hazard along Sandy Hook spit where the primary recreational beach has been eroding at about 10 m/yr since 1953 and 23 m/yr in the 1970s. Large spatial variations in longshore sediment transport are found to result from differences in refracted wave energies and intersegmental sediment transport. Erosion results from a 60 per cent deficit (-270,000 m3/yr) in the sediment budget that is primarily caused by (1) refraction induced locally high waves that increase the transport rate by 100,000 m3, and (2) shore protection structures that have lessened the longshore sediment inputs by an additional 100,000 m3/yr. A storm index is presented to analyse secular climatic variation. It suggests that the annual sediment transport rate may vary by as much as ±50 per cent about the mean and that recently, above normal storm wave energies are responsible for about 60,000 m3/yr of the budget deficit. Rising sea levels and storm overwash each account for only about one per cent of the sediment loss. Pulses of sediment, induced by accelerated erosion at the feeder beach locale of spit segments, are found to move downdrift. They alter the geomorphology of the spit through episodic extensions of the spit segments with lag times exceeding one year per segment.  相似文献   

15.
In arid and semi‐arid rangeland environments, an accurate understanding of runoff generation and sediment transport processes is key to developing effective management actions and addressing ecosystem response to changes. Yet, many primary processes (namely sheet and splash and concentrated flow erosion, as well as deposition) are still poorly understood due to a historic lack of measurement techniques capable of parsing total soil loss into these primary processes. Current knowledge gaps can be addressed by combining traditional erosion and runoff measurement techniques with image‐based three‐dimensional (3D) soil surface reconstructions. In this study, data (hydrology, erosion and high‐resolution surface microtopography changes) from rainfall simulation experiments on 24 plots in saline rangelands communities of the Upper Colorado River Basin were used to improve understanding on various sediment transport processes. A series of surface change metrics were developed to quantify and characterize various erosion and transport processes (e.g. plot‐wide versus concentrated flow detachment and deposition) and were related to hydrology and biotic and abiotic land surface characteristics. In general, erosivity controlled detachment and transport processes while factors modulating surface roughness such as vegetation controlled deposition. The extent of the channel network was a positive function of slope, discharge and vegetation. Vegetation may deflect runoff in many flow paths but promoted deposition. From a management perspective, this study suggests that effective runoff soil and salt load reduction strategies should aim to promote deposition of transported sediments rather than reducing detachment which might not be feasible in these resource‐limited environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Our understanding of the effect of scale on runoff and sediment transfers within catchments is currently limited by a lack of available data. A multi‐scale dataset of 17 rainfall events collected simultaneously at four spatial scales within a small agricultural catchment in 2005–2006 is presented. Analysis using exploratory techniques and a two‐step, zero‐inflated lognormal mixed‐effects regression model, has demonstrated that event responses, and event response characteristics representing runoff and sediment peaks and area‐normalized yields, are scale dependent, and hence cannot be transferred directly between scales. Runoff and sediment yields increase as scale increases, and it is proposed that this effect, which differs from that observed in the few other studies of scale effects undertaken, is due to increasing connectivity within the catchment, and the dominance of preferential flow pathways including through macropores and field drains. The processes contributing to scale dependence in the data, and the possibility that certain processes dominate at particular scales, are discussed. The data presented here help to improve our spatial understanding of runoff and sediment transport in small agricultural catchments, and provide examples of the type of spatial dataset and the type of analysis that are essential if we are to develop models which are able to predict runoff and soil erosion accurately, and allow us to manage runoff and sediment transport effectively across scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The response of runoff and erosion to soil crusts has been extensively investigated in recent decades. However, there have been few attempts to look at the effects of spatial configuration of different soil crusts on erosion processes. Here we investigated the effects of different spatial distributions of physical soil crusts on runoff and erosion in the semi‐arid Loess Plateau region. Soil boxes (1.5 m long × 0.2 m wide) were set to a slope of 17.6% (10°) and simulated rainfall of 120 mm h?1 (60 minutes). The runoff generation and erosion rates were determined for three crust area ratios (depositional crust for 20%, 33%, and 50% of the total slope) and five spatial distribution patterns (depositional crust on the lower, lower‐middle, middle, mid‐upper, and upper slope) of soil crusts. The reduction in sediment loss (‘sediment reduction’) was calculated to evaluate the effects of different spatial distributions of soil crusts on erosion. Sediment yield was influenced by the area ratio and spatial position of different soil crusts. The runoff rate reached a steady state after an initial trend of unsteadily increasing with increasing rainfall duration. Sediment yield was controlled by detachment limitation and then transport limitation under rainfall. The shifting time of erosion from a transport to detachment‐limiting regime decreased with increasing area of depositional crust. No significant differences were observed in the total runoff among treatments, while the total sediment yield varied under different spatial distributions. At the same area ratio, total sediment yield was the largest when the depositional crust was on the upper slope, and it was smallest when the crust was deposited on the lower slope. The sediment reduction of structural crust (42.5–66.5%) was greater than that of depositional crust (16.7–34.3%). These results provide a mechanistic understanding of how different spatial distributions of soil crusts affect runoff and sediment production. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This paper reviews methods for estimating evaporation from landscapes, regions and larger geographic extents, with remotely sensed surface temperatures, and highlights uncertainties and limitations associated with those estimation methods. Particular attention is given to the validation of such approaches against ground based flux measurements. An assessment of some 30 published validations shows an average root mean squared error value of about 50 W m?2 and relative errors of 15–30%. The comparison also shows that more complex physical and analytical methods are not necessarily more accurate than empirical and statistical approaches. While some of the methods were developed for specific land covers (e.g. irrigation areas only) we also review methods developed for other disciplines, such as hydrology and meteorology, where continuous estimates in space and in time are needed, thereby focusing on physical and analytical methods as empirical methods are usually limited by in situ training data. This review also provides a discussion of temporal and spatial scaling issues associated with the use of thermal remote sensing for estimating evaporation. Improved temporal scaling procedures are required to extrapolate instantaneous estimates to daily and longer time periods and gap-filling procedures are needed when temporal scaling is affected by intermittent satellite coverage. It is also noted that analysis of multi-resolution data from different satellite/sensor systems (i.e. data fusion) will assist in the development of spatial scaling and aggregation approaches, and that several biological processes need to be better characterized in many current land surface models.  相似文献   

20.
For the southern branch of the Rhine–Meuse estuary, The Netherlands, a two-dimensional horizontal suspended sediment transport model was constructed in order to evaluate the complicated water quality management of the area. The data needed to calibrate the model were collected during a special field survey at high river runoff utilizing a number of techniques: (1) turbidity probes were used to obtain suspended sediment concentration profiles; (2) air-borne remote sensing video recordings were applied in order to obtain information concerning the spatial distribution of the suspended sediment concentration; (3) an acoustic probe (ISAC) was used to measure cohesive bed density profiles and (4) an in situ underwater video camera (VIS) was deployed to collect video recordings of the suspended sediment. These VIS data were finally processed to fall velocity and diameter distributions and were mainly used to improve insight into the relevant transport processes, indicating significant erosion of sand from the upstream Rhine branch. For quantitative calibration of the model, the data from the turbidity profiles were used. Sedimentation and erosion were modelled according to Krone and Partheniades. The model results showed a good overall fit to the measurements, with a mean absolute error of 18 per cent (standard fault = 1 per cent), corresponding to concentrations of about 0·020 (upstream) to 0·005 kg m−3 (downstream). The overall correlation between observed and simulated suspended sediment concentrations was 0·85. The remote sensing video recordings were used for a qualitative calibration of the model. The distribution pattern of the suspended sediment on these photos was reproduced quite well by the model. However, a more accurate calibration technique is needed to enable the use of aerial remote sensing as a quantitative calibration method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号