首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many field techniques used to quantify rates of hyporheic exchange, which can vary in magnitude and direction spatially over distances of only a few metres, both within and between morphological features. We used in‐stream mini‐piezometers and heat transport modelling of stream and streambed temperatures to quantify the rates and directions of water flux across the streambed interface upstream and downstream of three types of in‐stream geomorphic features: a permanent dam, a beaver dam remnant and a stream meander. We derived hyporheic flux estimates at three different depths at six different sites for a month and then paired those flux rates with measurements of gradient to derive hydraulic conductivity (K) of the streambed sediments. Heat transport modelling provided consistent daily flux estimates that were in agreement directionally with hydraulic gradient measurements and also identified vertical heterogeneities in hydraulic conductivity that led to variable hyporheic exchange. Streambed K varied over an order of magnitude (1·9 × 10?6 to 5·7 × 10?5 m/s). Average rates of hyporheic flux ranged from static (q < ±0·02 m/day) to 0·42 m/day. Heat transport modelling results suggest three kinds of flow around the dams and the meander. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The hyporheic zone (HZ) plays a vital role in the stream ecosystem. Reactions in the HZ such as denitrification and nitrification have been examined in previous studies. However, no numerical model has yet been developed that can accurately simulate nitrogen concentration changes in the HZ, because the zones for the two reactions can change throughout the reactions. This study proposes a method of evaluating the nitrogen removal rate in the HZ through numerical modelling. First, a basic two‐dimensional numerical model coupling flow conditions with biochemical reactions is proposed to consider both nitrification and denitrification. The zones for different reactions are determined under the assumption that related environmental variables (i.e., the dissolved oxygen) will not change throughout the reactions. Next, to examine changes in environmental variables throughout the reactions, an improved model is proposed, and a method is developed for delineating the boundary between nitrification and denitrification zones and identifying a transition zone where either reaction might take place. However, more information about biochemical reactions in the HZ is required to use the improved model. To overcome this shortcoming, a new model that couples the basic model and genetic programming (GP) is proposed to optimize the simulation results of the basic model and allow for real‐time forecasting. The results show that the basic model obtains acceptable simulation results for nitrate concentration distribution in the HZ. The improved model performs better than the basic model, but the model coupling the basic model with GP performs best. In addition, the function of the HZ in nitrogen removal is examined through a case study of four scenarios, leading to the conclusion that the HZ has a higher nitrogen removal rate when water quality is neither too poor nor too good. Overall, this study enhances our understanding of the HZ and can benefit the restoration and management of HZs and streams in the face of the continual degradation caused by human activity.  相似文献   

3.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Although there has been recent focus on understanding spatial variability in hyporheic zone geochemistry across different morphological units under baseflow conditions, less attention has been paid to temporal responses of hyporheic zone geochemistry to non‐steady‐state conditions. We documented spatial and temporal variability of hyporheic zone geochemistry in response to a large‐scale storm event, Tropical Storm Irene (August 2011), across a pool–riffle–pool sequence along Chittenango Creek in Chittenango, NY, USA. We sampled stream water as well as pore water at 15 cm depth in the streambed at 14 locations across a 30 m reach. Sampling occurred seven times at daily intervals: once during baseflow conditions, once during the rising limb of the storm hydrograph, and five times during the receding limb. Principal component analysis was used to interpret temporal and spatial changes and dominant drivers in stream and pore water geochemistry (n = 111). Results show the majority of spatial variance in hyporheic geochemistry (62%) is driven by differential mixing of stream and ground water in the hyporheic zone. The second largest driver (17%) of hyporheic geochemistry was temporal dilution and enrichment of infiltrating stream water during the storm. Hyporheic sites minimally influenced by discharging groundwater (‘connected’ sites) showed temporal changes in water chemistry in response to the storm event. Connected sites within and upstream of the riffle reflected stream geochemistry throughout the storm, whereas downstream sites showed temporally lagged responses in some conservative and biogeochemically reactive solutes. This suggests temporal changes in hyporheic geochemistry at these locations reflect a combination of changes in infiltrating stream chemistry and hyporheic flowpath length and residence time. The portion of the study area strongly influenced by groundwater discharge increased in size throughout the storm, producing elevated Ca2+ and concentrations in the streambed, suggesting zones of localized groundwater inputs expand in response to storms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Spatial and temporal variability in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream was investigated. Four locations in a 150‐m reach of the stream were studied using hydrometric and hydrochemical tracing techniques. A high degree of hydrological connectivity between the riparian hillslope and the stream channel was indicated at two locations, where hydrochemical changes and hydraulic gradients indicated that the hyporheic zone was dominated by upwelling ground water. The chemistry of ground water reflected relatively long residence times and reducing conditions with high levels of alkalinity and conductivity, low dissolved oxygen (DO) and nitrate. At the other locations, connectivity was less evident and, at most times, the hyporheic zone was dominated by downwelling stream water characterized by high DO, low alkalinity and conductivity. Substantial variability in hyporheic chemistry was evident at fine (<10 m) spatial scales and changed rapidly over the course of hydrological events. The nature of the hydrochemical response varied among locations depending on the strength of local ground water influence. It is suggested that greater emphasis on spatial and temporal heterogeneity in ground water–surface water interactions in the hyporheic zone is necessary for a consideration of hydrochemical effects on many aspects of stream ecology. For example, the survival of salmonid eggs in hyporheic gravels varied considerably among the locations studied and was shown to be associated with variation in interstitial chemistry. River restoration schemes and watershed management strategies based only on the surface expression of catchment characteristics risk excluding consideration of potentially critical subsurface processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Phosphorus (P) concentrations in sediments and in surface and interstitial water from three gravel bars in a large river (Garonne River, southern France) were measured daily, downstream of a wastewater treatment plant for a city of 740 000 inhabitants (Toulouse). Measurements were made of vertical hydraulic gradient (VHG), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP) and total phosphorus (TP) in water and of three extractable forms of phosphorus (water extractable, NaOH extractable and H2SO4 extractable) in hyporheic sediments from the gravel bars. Dissolved phosphorus was the major contributor to TP (74–79%) in both interstitial and surface waters on all sampling dates, and in most cases surface water P concentrations were significantly higher than interstitial concentrations. Hyporheic sediment TP concentrations ranged between 269 and 465 µg g?1 and were highest in fine sediment fractions. Acid‐extractable P, a non‐bioavailable form, represented at least 95% of sediment TP. A positive relationship was observed between VHG and TP in two of the gravel bars, with wells that were strongly downwelling having lower TP concentrations. These results suggest that in downwelling zones, hyporheic sediments can trap surface‐derived dissolved P, and that much of this P becomes stored in refractory particulate forms. Bioavailable P is mainly present in dissolved form and only occupies a small fraction of total P, with particulate P comprising the majority of total P. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Methane concentrations and selected chemical parameters in interstitial water were examined along subsurface flowpath in two subsystems (hyporheic and parafluvial sediments) in the Sitka stream, Czech Republic. Interstitial methane concentrations exhibited a distinct spatial pattern. In the hyporheic downwelling zone where the sediments are relatively well oxygenated due to high hydrologic exchange with the surface water, low interstitial methane concentrations, averaging 9.3 μg CH4/l, were found. In contrast, upwelling sediments and parafluvial sediments (active channel sediments lateral to the wetted channel) had significantly higher methane concentrations (p < 0.05, and p < 0.01, respectively), averaging 43.2 μg CH4/l and 160.5 μg CH4/l, respectively. Dissolved oxygen was the highest where surface water entered hyporheic/parafluvial sediments and decreased with water residence time in the sediments (p < 0.01). Nitrate concentrations decreased along the flowpath and were significantly lower at downstream end of the riffle (p < 0.001). Sulfate concentrations also show a slight decline with the water residence time, but differences were not significant. Effect of both nitrate and sulfate on methanogenesis is also discussed. The interstitial methane concentration significantly increased with surface water temperature (p < 0.001) and was negatively correlated with redox potential (p < 0.01) and dissolved oxygen (p < 0.05).  相似文献   

9.
In watersheds impacted by nitrate from agricultural fertilizers, nitrification and denitrification may be decoupled as denitrification in the hyporheic zone is not limited to naturally produced nitrate. While most hyporheic research focuses on the 1–2 m of sediment beneath the stream bed, there are a limited number of studies that quantify nitrogen (N) cycling at larger hyporheic scales (10s of metres to kms). We conducted an investigation to quantify N cycling through a single meander of a low gradient, meandering stream, draining an agricultural watershed. Chemistry (major ions and N species) and hydrologic data were collected from the stream and groundwater beneath the meander. Evidence indicates that nearly all the shallow groundwater flowing beneath the meander originates as stream water on the upgradient side of the meander, and returns to the stream on the downgradient side. We quantified the flux of water beneath the meander using a numerical model. The flux of N into and out of the meander was quantified by multiplying the concentration of the important N species (nitrate, ammonium, dissolved organic nitrogen (DON)) by the modelled water fluxes. The flux of N into the meander is dominated by nitrate, and the flux of N out of the meander is dominated by ammonium and DON. While stream nitrate varied seasonally, ammonium and DON beneath the meander were relatively constant throughout the year. When stream nitrate concentrations are high (>2 mg litre?1), flow beneath the meander is a net sink for N as more N from nitrate in stream water is consumed than is produced as ammonium and DON. When stream nitrate concentrations are low (<2 mg litre?1), the flux of N entering is less than exiting the meander. On an annual basis, the meander hyporheic flow serves as a net sink for N. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Time‐lapse geophysical surveys can map lingering hyporheic storage by detecting changes in response to saline tracer. Tracer tests were conducted in Crabby Creek, an urban stream outside Philadelphia, to examine the influence of stream restoration structures and variable sediment thickness. We compared electrical resistivity surveys with extensive well sampling (57 wells) in two 13.5‐m‐long reaches, each with a step drop created by a J‐hook. The two step drops varied in tracer behaviour, based on both the well data and the geophysical data. The well data showed more variation in arrival time where the streambed sediment was thick and was more uniform where sediment was thin. The resistivity in the reach with thin sediment showed lingering tracer in the hyporheic zone both upstream and downstream from the J‐hook. In the second reach where the sediment was thicker, the lingering tracer in the hyporheic zone was more extensive downstream from the J‐hook. The contrasting results between the two reaches from both methods suggested that sediments influenced hyporheic exchange more than the step at this location. Resistivity inversion differed from well data in both reaches in that it showed evidence for tracer after well samples had returned to background, mapping lingering tracer either upstream or downstream of a step. We conclude that resistivity surveys may become an important tool for hyporheic zone characterization because they provide information on the extent of slow moving fluids in the hyporheic zone, which have the potential to enhance chemical reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This study investigates the applicability of selected pharmaceutical compounds (e.g. sulfamethoxazole, carbamazepine, ibuprofen) as anthropogenic indicators for the interaction of surface water and groundwater in the hyporheic zone of an alluvial stream. Differences in transport behaviour and the resulting distribution of the pharmaceuticals in the riverine groundwater were evaluated. The investigated field site in the Grand Duchy of Luxembourg, Europe is represented by low permeable sediments and confined aquifer conditions. Water samples from single‐screen and multilevel observation wells installed in the riverbank at the field site were taken and analysed for selected pharmaceuticals and major ions for a period of 6 months. Surface water and groundwater levels were recorded to detect effluent and influent aquifer conditions. Nearly all pharmaceuticals that were detected in the stream were also found in the riverine groundwater. However, concentrations were significantly lower in groundwater than in surface water. A classification into mobile and sorbing/degradable pharmaceuticals based on their transport relevant properties was made and verified by the field data. Gradients with depth for some of these pharmaceuticals were documented and a more detailed understanding of the system stream/riverbank was obtained. It was demonstrated that the selected pharmaceutical compounds can be used as anthropogenic indicators at the investigated field site. However, not all compounds seem to be suitable indicators as their transport behaviour is not fully understood. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Jens Flster 《水文研究》2001,15(2):201-217
The near‐stream zone has received increasing attention owing to its influence on stream water chemistry in general and acidity in particular. Possible processes in this zone include cation exchange, leaching of organic matter and redox reactions of sulphur compounds. In this study the influences of processes in the near‐stream zone on the acidity in runoff from a small, acidified catchment in central southern Sweden were investigated. The study included sampling of groundwater, soil water and stream water along with hydrological measurements. An input–output budget for the catchment was established based on data from the International Co‐operative Programme on Integrated Monitoring at this site. The catchment was heavily acidified by deposition of anthropogenic sulphur, with pH in stream water between 4·4 and 4·6. There was also no relationship between stream flow and pH, which is indicative of chronic acidification. Indications of microbial reduction of sulphate were found in some places near the stream, but the near‐stream zone did not have a general impact on the sulphate concentration in discharging groundwater. The near‐stream zone was a source of dissolved organic carbon (DOC) in the stream, which had a median DOC of 6·8 mg L1. The influence on stream acidity from organic anions was overshadowed by the effect of sulphate, however, except during a spring flow episode, when additional organic matter was flushed out and the sulphate‐rich ground water was mixed with more diluted event water. Ion exchange was not an important process in the near‐stream zone of the Kindla catchment. Different functions of the near‐stream zone relating to discharge acidity are reported in the literature. In this study there was even a variation within the site. There is therefore a need for more case studies to provide a more detailed understanding of the net effects that the near‐stream zone can have on stream chemistry under different circumstances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

15.
The hyporheic zone is a layer of substrate on a river bed where benthic animals normally live,grow,feed,reproduce,and exist for any portion of their life cycle.The hyporheic zone was studied by samplin...  相似文献   

16.
Stream temperature was recorded between 2002 and 2005 at four sites in a coastal headwater catchment in British Columbia, Canada. Shallow groundwater temperatures, along with bed temperature profiles at depths of 1 to 30 cm, were recorded at 10‐min intervals in two hydrologically distinct reaches beginning in 2003 or 2004, depending on the site. The lower reach had smaller discharge contributions via lateral inflow from the hillslopes and fewer areas with upwelling (UW) and/or neutral flow across the stream bed compared to the middle reach. Bed temperatures were greater than those of shallow groundwater during summer, with higher temperatures in areas of downwelling (DW) flow compared to areas of neutral and UW flow. A paired‐catchment analysis revealed that partial‐retention forest harvesting in autumn 2004 resulted in higher daily maximum stream and bed temperatures but smaller changes in daily minima. Changes in daily maximum stream temperature, averaged over July and August of the post‐harvest year, ranged from 1.6 to 3 °C at different locations within the cut block. Post‐harvest changes in bed temperature in the lower reach were smaller than the changes in stream temperature, greater at sites with DW flow, and decreased with depth at both UW and DW sites, dropping to about 1 °C at a depth of 30 cm. In the middle reach, changes in daily maximum bed temperature, averaged over July and August, were generally about 1 °C and did not vary significantly with depth. The pre‐harvest regression models for shallow groundwater were not suitable for applying the paired‐catchment analysis to estimate the effects of harvesting. However, shallow groundwater was warmer at the lower reach following harvesting, despite generally cooler weather compared to the pre‐harvest year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
River managers and scientists interested in hyporheic processes need adequate tools for characterizing hyporheic exchange flow (HEF) at local sites where only poor information on subsurface properties are available. This study evaluates a three‐dimensional modelling approach, on the basis of detailed surface parameterization and a simplified subsurface structure, for comparison of potential HEF characteristics at three experimental reaches at the channel‐unit scale. First, calibration is conducted to determine the best fit‐of‐heads given the model simplification, then the structure of residuals are used to evaluate the origin of the misfit, and finally, a sensitivity analysis is conducted to identify inter‐site differences in HEF. Results show that such an approach can highlight potential magnitude differences in HEF characteristics between reaches. The sensitivity analysis is successful in delineating the small area of exchange that remains under conditions of high groundwater discharge. In this case, however, the calibrated model performs poorly in representing the exchange pattern at the sediment–water interface, thus suggesting that the approach is less adequate for a deterministic simulation of observed heads. The summary statistics are in the range of similar published models, for which the reported indicator is the root mean square error on heads normalized by the head drop over the reach. We recommend, however, that modellers use a more comparable indicator, such as a measure of the residuals normalized by a measure of observed vertical head differences. Overall, when subsurface data are unavailable or sparse, a three‐dimensional groundwater model based on high‐resolution topographic data combined with a sensitivity analysis appears as a useful tool for a preliminary characterization of HEF. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
It is widely recognized that high supplies of fine sediment, largely sand, can negatively impact the aquatic habitat quality of gravel‐bed rivers, but effects of the style of input (chronic vs. pulsed) have not been examined quantitatively. We hypothesize that a continuous (i.e. chronic) supply of sand will be more detrimental to the quality of aquatic habitat than an instantaneous sand pulse equal to the integrated volume of the chronic supply. We investigate this issue by applying a two‐dimensional numerical model to a 1 km long reach of prime salmonid spawning habitat in central Idaho. Results show that in both supply scenarios, sand moves through the study reach as bed load, and that both the movement and depth of sand on the streambed mirrors the hydrograph of this snowmelt‐dominated river. Predictions indicate greater and more persistent mortality of salmonid embryos under chronic supplies than pulse inputs, supporting our hypothesis. However, predicted mortality varies both with salmonid species and location of spawning. We found that the greatest impacts occur closer to the location of the sand input under both supply scenarios. Results also suggest that reach‐scale morphology may modulate the impact of sand loads, and that under conditions of high sand loading climate‐related increases in flow magnitude could increase embryo mortality through sand deposition, rather than streambed scour. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A thin layer of fine‐grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low‐flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank‐filtration (RBF) sites. Results from a numerical groundwater‐flow model indicate that a low‐permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2‐cm thick, low‐permeability veneer is present on the bed surface. Increasing thickness of the low‐permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three‐orders‐of‐magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field‐measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low‐permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low‐permeability sediment veneer, as well as central‐pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号