首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models are widely used to simulate hydrological response and the generation and transport of constituents such as salt, phosphorus, and nitrogen from catchments to streams. Several models use a spatial representation with catchments divided into subcatchments. Variations in land use and other characteristics within subcatchments are represented by spatially lumped hydrologic response units (HRUs) or functional units instead of using fully distributed models. This approach disregards any spatial interaction between HRUs, including their connectivity to each other and to the stream and the influence of these interactions on water and constituent export. A spatially explicit hydrological model (Thales) was used to simulate a variety of theoretical catchments with soils dominated by combinations of infiltration excess, saturation excess, and subsurface stormflow processes and different soil constituent concentrations that were spatially interacting (i.e. located along a hillslope sequence). The modelling results show that the response of both runoff and concentration is sensitive to varying spatial arrangements due to interactions of runoff, infiltration, and chemical processes between the different soil types in many but not all situations. Results highlight the importance of considering connectivity of pathways when modelling hydrological response and constituents export. This is achieved by comparing pairs of simulations and the corresponding differences in the exported loads. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

3.
This study is about use of spatially distributed rain in physically based hydrological models. In recent years, spatially distributed radar rainfall data have become available. The distributed radar rain is used to precisely model hydrologic processes and it is more realistic than the past practice of distribution methods like Thiessen polygons. Radar provides a highly accurate spatial distribution of rainfall and greatly improves the basin average rainfall estimates. However, quantification of the exact amount of rainfall from radar observation is relatively difficult. Thus, the fundamental idea of this study is to apply hourly gauge and radar rainfall data in a distributed hydrological model to simulate hydrological parameters. Hence the comparison is made between the outcomes of the WetSpa model from radar rainfall distribution and gauge rainfall distributed by the Thiessen polygon technique. The comparative plots of the hydrograph and the results of hydrological components such as evapotranspiration, surface runoff, soil moisture, recharge and interflow, reflect the spatially distributed radar input performing well for model outflow simulation.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR F. Pappenberger  相似文献   

4.
C. Fleurant  B. Kartiwa  B. Roland 《水文研究》2006,20(18):3879-3895
The rainfall‐runoff modelling of a river basin can be divided into two processes: the production function and the transfer function. The production function determines the proportion of gross rainfall actually involved in the runoff. The transfer function spreads the net rainfall over time and space in the river basin. Such a transfer function can be modelled using the approach of the geomorphological instantaneous unit hydrograph (GIUH). The effectiveness of geomorphological models is actually revealed in rainfall‐runoff modelling, where hydrologic data are desperately lacking, just as in ungauged basins. These models make it possible to forecast the hydrograph shape and runoff variation versus time at the basin outlet. This article is an introduction to a new GIUH model that proves to be simple and analytical. Its geomorphological parameters are easily available on a map or from a digital elevation model. This model is based on general hypotheses on symmetry that provide it with multiscale versatile characteristics. After having validated the model in river basins of very different nature and size, we present an application of this model for rainfall‐runoff modelling. Since parameters are determined relying on real geomorphological data, no calibration is necessary, and it is then possible to carry out rainfall‐runoff simulations in ungauged river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Simultaneous monitoring of conservative and non-conservative tracers in streamflow offers a valuable means of obtaining information on the age and flow paths of water reaching the basin outlet. Previous studies of stormflow generation in a small forested basin on the Canadian Shield used isotopic (IHS) and geochemical hydrograph separations (GHS) to infer that some event water during snowmelt reaches the stream via subsurface pathways, and that surface water runoff is generated by direct precipitation on to saturated areas (DPSA) in the stream valley. These hypotheses were tested for rainfall inputs using simultaneous IHS (18O) and GHS (dissolved silica) of basin stormflow, supplemented by hydrochemical and hydrometric data from throughflow troughs installed on basin slopes. Comparison of pre-event and subsurface water hydrographs did not provide conclusive evidence for subsurface movement of event water to the stream, owing to the appreciable uncertainty associated with the hydrograph separations. However, IHSs of runoff at the soil–bedrock interface on basin slopes indicated that event water comprised 25–50% of total runoff from areas with deep soil cover, and that these contributions supplied event water flux from the basin in excess of that attributable to DPSA. The surface water component of stormflow estimated from the GHS was also largely the result of DPSA. GHS assumes that dissolved silica is rapidly and uniformly taken up by water infiltrating the soil and that water moving via surface pathways retains the low dissolved silica level of rainfall; however, neither assumption was supported by the hillslope results. Instead, results suggest that the observed depression of silica levels in basin stormflow previously attributed to dilution by DPSA was partly a function of transport of dilute event water to the channel via preferential pathways. Implications of these results for the general use of simultaneous IHS and GHS to infer hydrological processes are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

7.
8.
An event‐based model is used to investigate the impact of the spatial distribution of imperviousness on the hydrologic response of a basin characterized by an urban land use. The impact of the spatial distribution of imperviousness is investigated by accounting for its location within the basin when estimating the generated runoff and the hydrologic response. The event model accounts for infiltration and saturation excess; the excess runoff is routed to the outlet using a geomorphologic unit hydrograph. To represent the spatial distribution of rainfall and imperviousness, radar and remotely derived data are used, respectively. To estimate model parameters and analyse their behaviour, a split sample test and parameter sensitivity analysis are performed. From the analysis of parameters, we found the impervious cover tends to increase the sensitivity and storm dependency of channel routing parameters. The calibrated event model is used to investigate the impact of the imperviousness gradient by estimating and comparing hydrographs at internal locations in the basin. From this comparison, we found the urban land use and the spatial variability of rainfall can produce bigger increases in the peak flows of less impervious areas than the most urbanized ones in the basin. To examine the impacts of the imperviousness pattern, scenarios typifying extreme cases of sprawl type and clustered development are used while accounting for the uncertainty in parameters and the initial condition. These scenarios show that the imperviousness pattern can produce significant changes in the response at the main outlet and at locations internal to the overall watershed. Overall, the results indicate the imperviousness pattern can be an influential factor in shaping the hydrologic response of an urbanizing basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The Vallcebre research catchments are located in the south-eastern Pyrenees, in an area of diverse land use and varying levels of degradation, including forested hillslopes, abandoned agricultural terraces and badland areas. Outside the badlands, the hydrological response is controlled by saturation mechanisms. Between September and June the spatial patterns of saturated areas and soil moisture are determined by subsurface flow, modified by the premature saturation of the inner parts of agricultural terraces, and the negative soil moisture anomalies induced by forest patches overgrown in grassland areas. During summer, this behaviour ceases because of soil moisture depletion and badland surfaces are the only hydrologically active areas, producing excess runoff in response to the intense rainstorms. During the beginning and the ending of the wet season, the saturation of active areas shows a hysteretic behaviour that breaks the linearity between the mean water reserve of the basin and the relative saturated area. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall‐runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over‐parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall‐runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse‐textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel–Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrological processes in karst basins are controlled by permeable multimedia, consisting of soil pores, epikarst fractures, and underground conduits. Distributed modelling of hydrological dynamics in such heterogeneous hydrogeological conditions is a challenging task. Basing on the multilayer structure of the distributed hydrology‐soil‐vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the ‘cubic law’ equation which is associated with fractural width, direction, and spacing. A small karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The model parameters were determined on the basis of field measurement and calibrated against the observed soil moisture contents, vegetation interception, surface runoff, and underground flow discharges from the basin outlet. The results show that due to high permeability of the epikarst zone, a significant amount of surface runoff is only generated after heavy rainfall events during the wet season. Rock exposure and the epikarst zone significantly increase flood discharge and decrease evapotranspiration (ET) loss; the peak flood discharge is directly proportional to the size of the aperture. Distribution of soil moisture content (SMC) primarily depends on topographic variations just after a heavy rainfall, while SMC and actual ET are dominated by land cover after a period of consecutive non‐rainfall days. The new model was able to capture the sharp increase and decrease of the underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features and land covers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Hydrological studies across varied climatic and physiographic regions have observed small changes in the ‘states of wetness’; based on average soil moisture, can lead to dramatic changes in the amount of water delivered to the stream channel. This non-linear behaviour of the storm response has been attributed to a critical switching in spatial organization of shallow soil moisture and hydrologic connectivity. However, much of the analysis of the role of soil moisture organization and connectivity has been performed in small rangeland catchments. Therefore, we examined the relationship between hydrologic connectivity and runoff response within a temperate forested watershed of moderate relief. We have undertaken spatial surveys of shallow soil moisture over a sequence of storms with varying antecedent moisture conditions. We analyse each survey for evidence of hydrologic connectivity and we monitor the storm response from the catchment outlet. Our results show evidence of a non-linear response in runoff generation over small changes in measures of antecedent moisture conditions; yet, unlike the previous studies of rangeland catchments, in this forested landscape we do not observe a significant change in geostatistical hydrologic connectivity with variations in antecedent moisture conditions. These results suggest that a priori spatial patterns in shallow soil moisture in forested terrains may not always be a good predictor of critical hydrologic connectivity that leads to threshold change in runoff generation, as has been the case in rangeland catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Topography exerts critical controls on many hydrologic, geomorphologic and biophysical processes. However, many watershed modelling systems use topographic data only to define basin boundaries and stream channels, neglecting opportunities to account for topographic controls on processes such as soil genesis, soil moisture distributions and hydrological response. Here, we demonstrate a method that uses topographic data to adjust spatial soil morphologic and hydrologic attributes: texture, depth to the C‐horizon, saturated conductivity, bulk density, porosity and the water capacities at field (33 kpa) and wilting point (1500 kpa) tensions. As a proof of concept and initial performance test, the values of the topographically adjusted soil parameters and those from the Soil Survey Geographic Database (SSURGO; available at 1 : 20 000 scale) were compared with measured soil pedon pit data in the Grasslands Soil and Water Research Lab watershed in Riesel, TX. The topographically adjusted soils were better correlated with the pit measurements than were the SSURGO values. We then incorporated the topographically adjusted soils into an initialization of the Soil and Water Assessment Tool model for 15 Riesel research watersheds to investigate how changes in soil properties influence modelled hydrological responses at the field scale. The results showed that the topographically adjusted soils produced better runoff predictions in 50% of the fields, with the SSURGO soils performing better in the remainder. In addition, the a priori adjusted soils result in fewer calibrated model parameters. These results indicate that adjusting soil properties based on topography can result in more accurate soil characterization and, in some cases, improve model performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Climate change and human activities are two major driving forces affecting the hydrologic cycle, which further influence the stationarity of the hydrologic regime. Hydrological drought is a substantial negative deviation from the normal hydrologic conditions affected by these two phenomena. In this study, we propose a framework for quantifying the effects of climate change and human activities on hydrological drought. First, trend analysis and change‐point test are performed to determine variations of hydrological variables. After that, the fixed runoff threshold level method (TLM) and the standardized runoff index (SRI) are used to verify whether the traditional assessment methods for hydrological drought are applicable in a changing environment. Finally, two improved drought assessment methods, the variable TLM and the SRI based on parameter transplantation are employed to quantify the impacts of climate change and human activities on hydrological drought based on the reconstructed natural runoff series obtained using the variable infiltration capacity hydrologic model. The results of a case study on the typical semiarid Laohahe basin in North China show that the stationarity of the hydrological processes in the basin is destroyed by human activities (an obvious change‐point for runoff series is identified in 1979). The traditional hydrological drought assessment methods can no longer be applied to the period of 1980–2015. In contrast, the proposed separation framework is able to quantify the contributions of climate change and human activities to hydrological drought during the above period. Their ranges of contributions to hydrological drought calculated by the variable TLM method are 20.6–41.2% and 58.8–79.4%, and the results determined by the SRI based on parameter transplantation method are 15.3–45.3% and 54.7–84.7%, respectively. It is concluded that human activities have a dominant effect on hydrological drought in the study region. The novelty of the study is twofold. First, the proposed method is demonstrated to be efficient in quantifying the effects of climate change and human activities on hydrological drought. Second, the findings of this study can be used for hydrological drought assessment and water resource management in water‐stressed regions under nonstationary conditions.  相似文献   

16.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Surface runoff on agricultural fields arises when rainfall exceeds infiltration. Excess water ponding in and flowing through local microtopography increases the hydrological connectivity of fields. In turn, an increased level of hydrological connectivity leads to a higher surface runoff flux at the field boundaries. We investigated the functional hydrological connectivity of synthetical elevation fields with varying statistical properties. For this purpose, we developed an object-oriented ponding and redistribution model to which Philip’s infiltration model was coupled. The connectivity behaviour is determined by the presence of depressions with a large area and spatial organization of microtopography in rills or channels. The presence of microdepressions suppresses the effect of the spatial variation of infiltration properties. Connectivity behaviour of a field with a varying spatial distribution of infiltration properties can be predicted by transforming the unique connectivity function that was defined for a designated microtopography.  相似文献   

18.
The fill–spill of surface depressions (wetlands) results in intermittent surface water connectivity between wetlands in the prairie wetland region of North America. Dynamic connectivity between wetlands results in dynamic contributing areas for runoff. However, the effect of fill–spill and the resultant variable or dynamic basin contributing area has largely been disregarded in the hydrological community. Long‐term field observations recorded at the St. Denis National Wildlife Area, Saskatchewan, allow fill–spill in the basin to be identified and quantified. Along with historical water‐level observations dating back to 1968, recent data collected for the basin include snow surveys, surface water survey and production of a light detection and ranging–derived digital elevation model. Data collection for the basin includes both wet and dry antecedent basin conditions during spring runoff events. A surface water survey at St. Denis in 2006 reveals a disconnected channel network during the spring freshet runoff event. Rather than 100% of the basin contributing runoff to the outlet, which most hydrological models assume, only approximately 39% of the basin contributes to the outlet. Anthropogenic features, such as culverts and roads, were found to influence the extent and spatial distribution of contributing areas in the basin. Historical pond depth records illustrate the effect of antecedent basin conditions on fill–spill and basin contributing area. A large pond at the outlet of the St. Denis basin, which only receives local runoff during dry years when upstream surface storage has not been satisfied, has pond runoff volumes that increase by a factor of 20 or more during wet years when upstream antecedent basin surface storage is satisfied and basin‐wide runoff contributes to the pond. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Many investigations show relationships between topographical factors and the spatial distribution of soil moisture in catchments. However, few quantitative analyses have been carried out to elucidate the role of different hydrological processes in the spatial distribution of topsoil moisture in catchments. A spatially distributed rainfall—runoff model was used to investigate contributions of subsurface matric flow, macropore flow and surface runoff to the spatial distribution of soil moisture in a cultivated catchment. The model results show that lateral subsurface flow in the soil matrix or in macropores has a minor effect on the spatial distribution of soil moisture. Only when a perched groundwater table is maintained long enough, which is only possible if the subsurface is completely impermeable, may a spatial distribution in moisture content occur along the slope. Surface runoff, producing accumulations of soil moisture in flat flow paths of agricultural origin (field boundaries), was demonstrated to cause significant spatial variations in soil moisture within a short period after rainfall (<2 days). When significant amounts of surface runoff are produced, wetter moisture conditions will be generated at locations with larger upstream contributing areas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号