首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dissolved organic carbon export from a cutover and restored peatland   总被引:1,自引:0,他引:1  
High demand for horticultural peat has increased peatland drainage and peat extraction in Canada. The hydrology and carbon cycling of these cutover peatlands is greatly altered, necessitating active restoration efforts to permit the regeneration of Sphagnum mosses and the re‐establishment of natural peatland function. The effect of peatland extraction and restoration on the export of dissolved organic carbon (DOC) was examined for three successive seasons (May to October, 1999 to 2001) at two different sites (cutover and restored) in eastern Québec. A shift towards higher DOC concentrations was observed following peatland extraction (maximum: 182·6 mg L?1) and concentrations remained high post‐restoration (maximum: 191·0 mg L?1). The cutover site exported more DOC than the restored site in all three study seasons. The highest exports occurred during the wettest year (1999), with cutover and restored site export of 10·3 and 4·8 g m?2, respectively. In 2000, 8·5 g C m?2 was released from the cutover site, while the restored site released less than half that amount (3·4 g C m?2). In 2001, the restored site released about the same amount of DOC as in the previous year (3·5 g C m?2), while the cutover site load dropped to 6·2 g C m?2. Both sites were net exporters of DOC in all years. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Although rewetting practices have been implemented in several cutover raised bogs, their effects on discharge patterns have not received much attention. In 1983, after peat extraction had stopped in the Leegmoor, a cutover raised bog in Germany, an experimental area was set up in order to monitor rewetting and subsequent restoration. Discharge was measured since 1984. The results suggest that rewetted raised bogs may not be effective as regulators of stream flow. An increase of low flows during a decade of rewetting could partly be attributed to weather variation. A comparison of the Leegmoor with a nearby control catchment produced similar results. A shift in the relationship between discharge and groundwater level over time was recorded. This is probably a result of the development of vegetation and a corresponding reduction of the area of open water, leading to an increase of resistance to water flow. The Leegmoor data demonstrate that the daily discharge pattern is most flashy immediately after the start of rewetting and will gradually smooth. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Peat specific yield (SY) is an important parameter involved in many peatland hydrological functions such as flood attenuation, baseflow contribution to rivers, and maintaining groundwater levels in surficial aquifers. However, general knowledge on peatland water storage capacity is still very limited, due in part to the technical difficulties related to in situ measurements. The objectives of this study were to quantify vertical SY variations of water tables in peatlands using the water table fluctuation (WTF) method and to better understand the factors controlling peatland water storage capacity. The method was tested in five ombrotrophic peatlands located in the St. Lawrence Lowlands (southern Québec, Canada). In each peatland, water table wells were installed at three locations (up‐gradient, mid‐gradient, and down‐gradient). Near each well, a 1‐m long peat core (8 cm × 8 cm) was sampled, and subsamples were used to determine SY with standard gravitational drainage method. A larger peat sample (25 cm × 60 cm × 40 cm) was also collected in one peatland to estimate SY using a laboratory drainage method. In all sites, the mean water table depth ranged from 9 to 49 cm below the peat surface, with annual fluctuations varying between 15 and 29 cm for all locations. The WTF method produced similar results to the gravitational drainage experiments, with values ranging between 0.13 and 0.99 for the WTF method and between 0.01 and 0.95 for the gravitational drainage experiments. SY was found to rapidly decrease with depth within 20 cm, independently of the within‐site location and the mean annual water table depth. Dominant factors explaining SY variations were identified using analysis of variance. The most important factor was peatland site, followed by peat depth and seasonality. Variations in storage capacity considering site and seasonality followed regional effective growing degree days and evapotranspiration patterns. This work provides new data on spatial variations of peatland water storage capacity using an easily implemented method that requires only water table measurements and precipitation data.  相似文献   

4.
Cutover bogs do not return to functional peatland ecosystems after abandonment because re‐establishment of peat‐forming mosses is poor. This paper presents a conceptual model of bog disturbance caused by peat harvesting (1942–1972), and the hydrological evolution that occurred after abandonment (1973–1998). Two adjacent bogs of similar size and origin, one harvested and the other essentially undisturbed, provide the basis for understanding what changes occurred. The model is based on historical trends evident from previous surveys of land‐use, bog ecology and resource mapping; and from recent hydrological and ecological data that characterize the current condition. Water balance data and historical information suggest that runoff increased and evapotranspiration decreased following drainage, but tended towards pre‐disturbance levels following abandonment, as vegetation recolonized the surface and drainage became less efficient over time. Dewatering of soil pores after drainage caused shrinkage and oxidation of the peat and surface subsidence of approximately 80 cm over 57 years. Comparisons with a nearby natural bog suggest that bulk density in the upper 50 cm of cutover peat increased from 0·07 to 0·13 g cm?3, specific yield declined from 0·14 to 0·07, water table fluctuations were 67% greater, and mean saturated hydraulic conductivity declined from 4·1 × 10?5 to 1·3 × 10?5 cm s?1. More than 25 years after abandonment, Sphagnum mosses were distributed over broad areas but covered less than 15% of the surface. Areas with ‘good’ Sphagnum regeneration (>10% cover) were strongly correlated with high water tables (mean ?22 cm), especially in zones of seasonal groundwater discharge, artefacts of the extraction history. Forest cover expanded from 5 to 20% of the study area following abandonment. The effect of forest growth (transpiration and interception) and drainage on lowering water levels eventually will be countered by slower water movement through the increasingly dense soil, and by natural ditch deterioration. However, without management intervention, full re‐establishment of natural hydrological functions will take a very long time. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrology, particularly the water table position below the surface (relative water level, RWL), is an important control on biogeochemical and ecological processes in peatlands. The surface elevation (SE) in a peatland oscillates in response to changes in effective stress on the peat matrix mainly caused by water level fluctuations. This phenomenon is called peatland surface oscillation (PSO). To investigate the spatiotemporal variability of PSO, surface elevation and the water level above sea level (AWL) were measured monthly (23 sites) over one year in a warm‐temperate restiad peatland, New Zealand. At one site peat surface elevation was measured indirectly by monitoring AWL and RWL continuously with pressure transducers. Annual PSO (the difference between maximum and minimum surface elevation) ranged from 3·2 to 28 cm (mean = 14·9 cm). Surface elevation changes were caused by AWL fluctuations. Spatially homogenous AWL fluctuations (mean 40 cm among sites) translated into RWL fluctuations reduced 27–56% by PSO except for three sites with shallow and dense peat at the peatland margin (7–17%). The SE‐AWL relationship was linear for 15 sites. However, eight sites showed significantly higher rates of surface elevation changes during the wet season and thus a non‐linear behaviour. We suggest flotation of upper peat layers during the wet season causing this non‐linear behaviour. Surprisingly, PSO was subjected to hysteresis: the positive SE‐AWL relationship reversed after rainfall when the surface slowly rose despite rapidly receding AWL. Hysteresis was more prominent during the dry season than during the wet season. Total peat thickness and bulk density together could only explain 50% of the spatial variability of PSO based on manual measurements. However, we found three broad types of SE‐AWL relationships differing in shape and slope of SE‐AWL curves. These oscillation types reflected patterns in vegetation and flooding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Peatland restoration practitioners are keen to understand the role of drainage via natural soil pipes, especially where erosion has released large quantities of fluvial carbon in stream waters. However, little is known about pipe-to-stream connectivity and whether blocking methods used to impede flow in open ditch networks and gullies also work on pipe networks. Two streams in a heavily degraded blanket bog (southern Pennines, UK) were used to assess whether impeding drainage from pipe networks alters the streamflow responses to storm events, and how such intervention affects the hydrological functioning of the pipe network and the surrounding peat. Pipeflow was impeded in half of the pipe outlets in one stream, either by inserting a plug-like structure in the pipe-end or by the insertion of a vertical screen at the pipe outlet perpendicular to the direction of the predicted pipe course. Statistical response variable η2 showed the overall effects of pipe outlet blocking on stream responses were small with η2 = 0.022 for total storm runoff, η2 = 0.097 for peak discharge, η2 = 0.014 for peak lag, and η2 = 0.207 for response index. Both trialled blocking methods either led to new pipe outlets appearing or seepage occurring around blocks within 90 days of blocking. Discharge from four individual pipe outlets was monitored for 17 months before blocking and contributed 11.3% of streamflow. Pipe outlets on streambanks with headward retreat produced significantly larger peak flows and storm contributions to streamflow compared to pipe outlets that issued onto straight streambank sections. We found a distinctive distance-decay effect of the water table around pipe outlets, with deeper water tables around pipe outlets that issued onto straight streambanks sections. We suggest that impeding pipeflow at pipe outlets would exacerbate pipe development in the gully edge zone, and propose that future pipe blocking efforts in peatlands prioritize increasing the residence time of pipe water by forming surface storage higher up the pipe network.  相似文献   

8.
An understanding of the symbiotic water and gas exchange processes at the ecosystem scale is essential to the development of appropriate restoration plans of extracted peatlands. This paper presents ecosystem scale measurements of the atmospheric exchange of water and carbon dioxide (CO2) from a restored vacuum extracted peatland in eastern Québec, utilizing full‐scale micrometeorological measurements of both evaporation and CO2. The results indicate that the adopted restoration practices reduce the loss of water from the peat, but CO2 emissions are ~25% greater than an adjacent nonrestored comparison site. The blockage of drainage ditches and the existence of a mulch cover at the site keep the moisture conditions more or less constant. Consequently, the CO2 flux, which is predominantly soil respiration, is strongly controlled by peat temperature fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
M. A. Shantz  J. S. Price 《水文研究》2006,20(18):3799-3814
Blocking drainage ditches and creating bunds to limit surface water losses are important for restoring abandoned peat‐extraction sites in North America. However, these runoff control techniques have not been well characterized, particularly during the snowmelt period. Therefore, patterns of runoff timing and magnitude were evaluated in a peatland (Bois‐des‐Bel, Quebec, Canada) undergoing restoration (restored site), in comparison with an unrestored section of the same peatland (unrestored site). Snowmelt dominated runoff, representing over 79% of the April to August runoff for both sites in 2001. Low (25–35 cm) bunds constructed on the restored site detained water for much of the melt period, but some water loss occurred where bunds were breached. Overland flow and surface ponding were prevalent at the restored site, but were not evident at the unrestored site. At the restored site, the presence of bunds and frozen, saturated (thus impermeable) ground contributed to differences in snowmelt runoff patterns relative to the unrestored site. In the post‐snowmelt period (May–August 2001 and 2002), restored site runoff was reduced to 25% of that lost at the unrestored site. Both hydrometric and chemical hydrograph separation analysis using electrical conductivity indicated that blocked ditches restricted water losses from much of the restored site during the summer months, when the bunds had little effect on runoff. However, discharge peaks were greater at the restored site relative to the unrestored site and generally occurred more quickly following rainfall, because of the wetter antecedent conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The American cranberry (Vaccinium macrocarpon Ait.) is an important part of the cultural heritage and economy of Southeastern Massachusetts, yet water quality concerns and wetland protection laws challenge its commercial production. Here, we report inputs and outputs of water, nitrogen (N), and phosphorus (P) for a 2.12‐ha cranberry bed over a 2‐year period from 2013 to 2015. Water‐budget analysis indicated that precipitation contributed 40%, floodwater 37%, irrigation 15%, and groundwater 8% of water inputs to the cranberry bed. Minor annual variation in surface water discharge (~90 mm·year?1 or 3%) contrasted with large decreases in net (= outputs ? inputs) nutrient export, from 16.2 to 9.1 kg N·ha?1·year?1 for total (dissolved + suspended particulate) nitrogen (TN) and from 3.34 to 1.47 kg P·ha?1·year?1 for total phosphorus (TP) between Years 1 and 2. Annual variation in net TN and TP export was tied to decreases in spring and summer nutrient export and controlled by the combined effects of fertilizer management, soil biogeochemistry, and hydrology. The relatively high spring TN export in Year 1 was associated with coincident increases in soil temperature and rainfall. A second factor was the timing of fertilizer application, which occurred 1 day prior to a major summer storm (i.e., third largest daily rainfall since 1926) and was responsible for up to 15% and 9% of the Year 1 TN and TP export, respectively. Nutrient budgets, which balanced water and fertilizer inputs with water, fruit, and vegetative outputs, were consistent with the burial of 21.6 kg N·ha?1·year?1 and 7.27 kg P·ha?1·year?1. Field measurements indicated that burial would increase TN and TP in the shallow (0–5 cm) rooting zone by 14% and 6%, respectively, which seemed plausible based on the relatively young age of the bed (4–5 years) and new root growth patterns in Vaccinium plants.  相似文献   

11.
Harvested sites rarely return to functional ecosystems after abandonment because drainage and peat extraction lower the water table and expose relatively decomposed peat, which is hydrologically unsuitable for Sphagnum moss re‐establishment. Some natural regeneration of Sphagnum has occurred in isolated pockets on traditionally harvested (block‐cut) sites, for reasons that are poorly understood, but are related to natural functions that regulate runoff and evaporation. This study evaluates the water balance of a naturally regenerated cutover bog and compares it with a nearby natural bog of similar size and origin, near Riviere du Loup, Quebec. Water balance results indicated that evapotranspiration was the major water loss from the harvested bog, comprising 92 and 84% of total outputs (2·9 mm day?1) during the 1997 and 1998 seasons, respectively. Despite denser tree cover at the harvested site, evapotranspiration from the natural bog was similar, although less spatially variable. At the harvested site, evaporative losses ranged from 1·9 mm day?1 on raised baulks and roads to 3·6 mm day?1 from moist surfaces with Sphagnum. Although about half of the ditches were inactive or operating at only a fraction of their original efficiency, runoff was still significant at 12 and 24% of precipitation during the 1997 and 1998 study seasons, respectively. This compares with negligible rates of runoff at the natural bog. Thus the cutover bog, although abandoned over 25 years ago, has not regained its hydrological function. This is both a cause and effect of its inability to support renewed Sphagnum regeneration. Without suitable management (e.g. blocking ditches), this site is not likely to improve for a very long time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Peatlands are globally important long-term sinks of carbon, however there is concern that enhanced peat decomposition and moss moisture stress due to climate change mediated drought will reduce moss productivity making these ecosystems vulnerable to carbon loss and associated long-term degradation. Peatlands are resilient to summer drought moss stress because of negative ecohydrological feedbacks that generally maintain a wet peat surface, but where feedbacks may be contingent on peat depth. We tested this ‘survival of the deepest’ hypothesis by examining water table (WT) position, near-surface moisture content, and soil water tension in peatlands that differ in size, peat depth, and catchment area during a summer drought. All shallow sites (<40 cm depth) lost their WT (i.e., the groundwater well was dry) for considerable time during the drought period. Near-surface soil water tension increased dramatically at shallow sites following WT loss, increasing ~5–7.5× greater at shallow sites compared to deep sites (≥40 cm depth). During a mid-summer drought intensive field survey, we found that 60–67% of plots at shallow sites exceeded a 100 mb tension threshold used to infer moss water stress. Unlike the shallow sites, tension typically did not exceed this 100 mb threshold at the deep sites. Using species dependent water content – chlorophyll fluorescence thresholds and relations between volumetric water content and WT depth, Monte Carlo simulations suggest that moss had nearly twice the likelihood of being stressed at shallow sites (0.38 ± 0.24) compared to deep sites (0.22 ± 0.18). This study provides evidence that mosses in shallow peatland may be particularly vulnerable to warmer and drier climates in the future, but where species composition may play an important role. We argue that a critical ‘threshold’ peat depth specific for different hydrogeological and hydroclimatic regions can be used to assess what peatlands are especially vulnerable to climate change mediated drought.  相似文献   

13.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   

14.
Terrestrial and aquatic ecological productivity are often nutrient limited in subarctic permafrost environments. High latitude regions are experiencing significant climatic change, including rapid warming and changing precipitation patterns, which may result in changes in nutrient dynamics within terrestrial and aquatic systems and hydrochemical transport between them. The objective of this research was to characterize changes in runoff quantity and quality within, and between peatlands and ponds throughout the snow‐free summer season. Two ponds and their catchments were monitored over the snow‐free season to measure changes in hydrologic storage, and to determine how water chemistry changed with the evolution of the frost table depth. Thresholds in hydrologic storage combined with frost table position (which inhibited infiltration and storage) produced nonlinear responses for runoff generation through highly conductive shallow peat layers while deeper, less conductive layers retarded flow. Greater inputs were required to exceed hydrologic storage (fill and spill) as a deepening frost table increased the hydrologically active portion of the soil, leading to seasonal variability in runoff pathways between peatlands and ponds. Runoff contributions to ponds were an integral component of the snow‐free water balance during the study period, contributing up to 60% of all snow‐free inputs. Groundwater chemistry (and pond chemistry following runoff events when ponds were connected with peatlands) reflected the different depths of peat and mineral soil accessed throughout the season. This work has improved scientific understanding of the combined controls of hydrologic inputs and ground frost on runoff and nutrient transport between peatlands and ponds, and sheds insight into how nutrient dynamics in cold regions may evolve under a changing climate.  相似文献   

15.
Peatlands play an important role in the global carbon cycle, and loss of dissolved organic carbon (DOC) has been shown to be important for peatland carbon budgets. The objective of this study was to determine how net production and export of DOC from a northern peatland may be affected by disturbance such as drainage and climate change. The study was conducted at a poor fen containing several pool–ridge complexes: (1) control site–no water table manipulation; (2) experimental site–monitored for one season in a natural state and then subjected to a water table drawdown for 3 years; (3) drained site–subjected to a water table drawdown 9 years prior to monitoring. The DOC concentration was measured in pore water along a microtopographic gradient at each site (hummock, lawn and hollow), in standing water in pools, and in discharge from the experimental and drained sites. The initial water table drawdown released ~3 g of carbon per square metre in the form of DOC, providing a large pulse of DOC to downstream ecosystems. This value, however, represents only 1–9% of ecosystem respiration at this site. Seasonal losses of DOC following drainage were 8–11 g of carbon per square metre, representing ~17% of the total carbon exchange at the experimental study site. Immediately following water table drawdown, DOC concentrations were elevated in pore water and open water pools. In subsequent seasons, DOC concentration in the pool declined, but remained higher than the control site even 11 years after water‐table drawdown. This suggests continued elevated net DOC production under lower water table conditions likely related to an increase in vegetation biomass and larger water table fluctuations at the experimental and drained sites. However, the increase in concentration was limited to initially wet microforms (lawns and hollows) reflecting differences in vegetation community changes, water table and soil subsidence along the microtopographic gradient. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.  相似文献   

16.
Forested boreal peatlands represent a precipitation‐dependent ecosystem that is prone to wildfire disturbance. Solar radiation exchange in forested peatlands is modified by the growth of a heterogeneous, open‐crown tree canopy, as well as by likely disturbance from wildfire. Radiation exchange at the peat surface is important in peatlands, as evaporation from the peat surface is the dominant pathway of water loss in peatlands of continental western North America. We examined shortwave and longwave radiation exchange in two forested ombrotrophic peatlands of central Alberta, Canada: one with (>75 years since wildfire; unburned) and another without a living spruce canopy (1–4 years since wildfire; burned) between the autumn of 2007 and 2010. Above‐canopy winter albedo was nearly two times greater in the recently burned peatland than the unburned peatland. Incoming shortwave radiation at the peat surface was much higher at the burned peatland, which increases the amount of energy available for evaporation. This is especially true for hollow microforms that are generally shaded by the tree canopy in unburned peatlands. Snow‐free albedo was similar between peatlands, although an increase in longwave losses at the burned site resulted in slightly greater net radiation at the unburned site. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Cushion plant dominated peatlands are key ecosystems in tropical alpine regions of the Andes in South America. The cushion plants have formed peat bodies over thousands of years that fill many valley bottoms, and the forage produced by the plants is critical for native and nonnative domesticated mammals. The sources and flow paths of water supporting these peatlands remain largely unknown. Some studies have suggested that glacier meltwater streams support some peatlands, and that the ongoing loss of glaciers and their meltwaters could lead to the loss or diminishment of peatlands. We analysed the hydrologic regime of 10 peatlands in four mountain regions of Bolivia and Peru using groundwater monitoring. Groundwater levels in peatlands were relatively stable and within 20 cm of the ground surface during the rainy season, and many sites had water tables 40–90 cm below the ground surface in the dry season. Topographic and groundwater elevations in the peatlands demonstrated that the water source of all 10 peatlands was hillslope groundwater flowing from lateral moraines, talus, colluvium, or bedrock aquifers into the peatlands. There was little to no input from streams, whether derived from glacier melt or other sources, and glacier melt could not have recharged the hillslope aquifers supporting peatlands. We measured the stable water isotopes in water samples taken during different seasons, distributed throughout the catchments, and the values are consistent with this interpretation. Our findings indicate that peatlands in the study region are recharged by hillslope groundwater discharge rather than stream water and may not be as vulnerable to glacial decline as other studies have indicated. However, both glaciers and peatlands are susceptible to changing thermal and precipitation regimes that could affect the persistence of peatlands.  相似文献   

18.
A significant proportion of tropical peatlands has been drained for agricultural purposes, resulting in severe degradation. Hydrological restoration, which usually involves blocking ditches, is therefore a priority. Nevertheless, the influence of ditch blocking on tropical peatland hydrological functioning is still poorly understood. We studied water-level dynamics using a combination of automated and manual dipwells, and also meteorological data during dry and wet seasons over 6 months at three locations in Sebangau National Park, Kalimantan, Indonesia. The locations were a forested peatland (Forested), a drained peatland with ditch dams (Blocked), and a drained peatland without ditch dams (Drained). In the dry season, water tables at all sites were deeper than the Indonesian regulatory requirement of 40 cm from the peat surface. In the dry season, the ditches were dry and water did not flow to them. The dry season water-table drawdown rates — solely due to evapotranspiration — were 9.3 mm day−1 at Forested, 9.6 mm day−1 at Blocked, but 12.7 mm day−1 at Drained. In the wet season, the proportion of time during which water tables in the wells were deeper than the 40 cm limit ranged between 16% and 87% at Forested, 0% at Blocked, and between 0% and 38% at Drained. In the wet season, water flowed from the peatland to ditches at Blocked and Drained. The interquartile range of hydraulic gradients between the lowest ditch outlet and the farthest well from ditches at Blocked was 3.7 × 10−4 to 7.8 × 10−4 m m−1, but 1.9 × 10−3 to 2.6 × 10−3 m m−1 at Drained. Given the results from Forested, a water-table depth limit policy based on field data may be required, to reflect natural seasonal dynamics in tropical peatlands. Revised spatial designs of dams or bunds are also required, to ensure effective water-table management as part of tropical peatland restoration.  相似文献   

19.
A hydrological investigation was conducted in a small headwater peatland located in the Experimental Lakes Area, north-western Ontario, Canada, to determine the subsurface and surface flow paths within the peatland, and between the peatland and an adjacent forested upland during baseflow and storm flow conditions. Distinct zones of groundwater recharge and discharge were observed within the peatland. These zones are similar to those found in much larger flow systems even though the peatland was only influenced by local groundwater flow. Groundwater emerging in seeps and flowing beneath the peatland sustained the surface wetness of the peatland and maintained a constant baseflow. The response of the peatland stream to summer rain events was controlled by peatland water table position when the basin was dry and antecedent moisture storage on the uplands when the basin was wet. The magnitude and timing of peak runoff during wet conditions were controlled by the degree of hydrological connectivity between the surrounding upland terrain and the peatland. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
This article presents the results of a field investigation of saturated hydraulic conductivity Ksat and bulk density (ρbd) in an Atlantic blanket bog in the southwest of Ireland. Starting at a peatland stream and moving along an uphill transect toward the peatland interior, ρbd and Ksat were examined at regular intervals. Saturated horizontal hydraulic conductivity (Khsat) and vertical (Kvsat) was estimated at two depths: 10–20 and 30–40 cm below the peat surface, whereas ρbd was estimated for the full profile. We consider two separate zones, one a riparian zone extending 10 m from the stream and a second zone in the bog interior. We found that the Ksat was higher (~10–5 m s–1) in the bog interior than that in the riparian zone (~10–6 m s–1), whereas the converse applied to bulk density, with lowest density (~0.055 g cm–3) at the interior and highest (~0.11 g cm–3) at the riparian zone. In general, we found Khsat to be approximately twice the Kvsat. These results support the idea that the lower Ksat at the margins control the hydrology of blanket peatlands. It is therefore important that the spatial variation of these two key properties be accommodated in hydrological models if the correct rainfall runoff characteristics are to be correctly modelled. Stream flow analysis over 3 years at the peatland catchment outlet showed that the stream runoff was composed of 8% base flow and 92% flood flow, suggesting that this blanket peatland is a source rather than a sink for floodwaters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号