首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the early 1990s, US Forest Service researchers have made thousands of bedload measurements in steep, coarse‐grained channels in Colorado and Wyoming, USA. In this paper we use data from 19 of those sites to characterize patterns and rates of coarse sediment transport for a range of channel types and sizes, including step–pool, plane‐bed, pool–riffle, and near‐braided channels. This effort builds upon previous work where we applied a piecewise regression model to (1) relate flow to rates of bedload transport and (2) define phases of transport in coarse‐grained channels. Earlier, the model was tested using bedload data from eight sites on the Fraser Experimental Forest near Fraser, Colorado. The analysis showed good application to those data and to data from four supplementary channels to which the procedure was applied. The earlier results were, however, derived from data collected at sites that, for the most part, have quite similar geology and runoff regimes. In this paper we evaluate further the application of piecewise regression to data from channels with a wider range of geomorphic conditions. The results corroborate with those from the earlier work in that there is a relatively narrow range of discharges at which a substantial change in the nature of bedload transport occurs. The transition from primarily low rates of sand transport (phase I) to higher rates of sand and coarse gravel transport (phase II) occurs, on average, at about 80 per cent of the bankfull (1·5‐year return interval) discharge. A comparison of grain sizes moved during the two phases showed that coarse gravel is rarely trapped in the samplers during phase I transport. Moreover, the movement and capture of the D16 to D25 grain size of the bed surface seems to correspond with the onset of phase II transport, particularly in systems with largely static channel surfaces. However, while there were many similarities in observed patterns of bedload transport at the 19 studied sites, each had its own ‘bedload signal’ in that the rate and size of materials transported largely reflected the nature of flow and sediment particular to that system. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

2.
Laboratory flume experiments were carried out to evaluate the effect of particle density on bedload transport of sand‐sized particles and the effect of a suspended load of clay particles (kaolinite) on bedload transport of sand‐sized particles in rill flow conditions. Three materials in the range 400–600 µm were selected to simulate bedload transport of primary particles and aggregates: sand (2650 kg/m3), crushed brick (2450 kg/m3) and anthracite (1300–1700 kg/m3). In the two first experiments, two different methods were applied to determine bedload transport capacity of coarse particles for various conditions of flow discharge (from 2 to 15 L/min) and slope (2.2, 3 and 4%). In the third experiment, clear water was replaced with kaolinite–water mixture and bedload transport capacity of crushed brick particles was determined for a 4% slope and different concentrations of kaolinite (0, 7, 41 and 84 g/L). The results showed that bedload transport increased significantly with the decrease in particle density but the effect of particle density on transport rates was much less important than flow discharge. Velocity measurements of clear flow, flow mixed with coarse particles and coarse particles confirmed the existence of a differentiation between suspended load and bedload. In these experimental conditions, suspended load of kaolinite did not affect bedload rates of crushed brick particles. Three transport capacity formulae were tested against observed bedload rates. A calibration of the Foster formula revealed that the shear stress exponent should be greater than 1.5. The Low and the Govers unit stream power (USP) equations were then evaluated. The Low equation was preferred for the prediction of bedload rates of primary particles but it was not recommended in the case of aggregates of low density because of the limited experimental conditions applied to derive this equation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We report on bedload transport observations using piezoelectric bedload impact sensors (PBIS), an indirect method of estimating the volume of bedload transport of coarse sediment. The PBIS device registers vibrations produced by bedload (particle diameter >~20 mm) and records the signal as a sum of the number of impulses per time. Sediment transport at the Erlenbach stream has been continuously monitored with a PBIS array starting in 1986. The sensor array spans the width of an entire cross‐section and is mounted flush with the surface of a check dam immediately upstream of a sediment retention basin. We compare PBIS data with long‐term sedimentation records obtained from repeated surveys of material stored in the sediment retention basin, with artificial sediment input under controlled conditions in the field, and also with laboratory experiments. The rate of bedload transport is proportional to the number of impacts on the sensor per unit time. The reliability of the calibration relationship increases with the length of the observation period, e.g. for higher numbers of impacts and larger bedload volumes. Sediment volumes for individual flood events estimated with the PBIS method are in agreement with volumes estimated using an independent empirical method based on the effective runoff volume of water, the peak water discharge, and the critical discharge for the onset of sediment transport. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In debris‐flow‐prone channels, normal fluvial sediment transport occurs (nearly exclusively in suspended mode) between episodic debris‐flow events. Observations of suspended sediment transport through a winter season in a steepland gully in logged terrain revealed two event types. When flows exceeded a threshold of 270 l s−1, events yielded significant quantities of sediment and suspended sediment concentration increased with flow. Smaller events were strongly ‘supply limited’; sediment concentration decreased as flow increased. Overall, there is no consistent correlation between runoff and sediment yield. Within the season, three subseasons were identified (demarcated by periods of freezing weather) within which a pattern of fine sediment replenishment and evacuation occurred. Finally, a signature of fine sediment mobilization and exhaustion was observed within individual events. Fine sediment transport occurred in discrete pulses within storm periods, most of the yield occurring within 5 to 15% of storm runoff duration, so that it is unlikely that scheduled sampling programs would identify significant transport. Significant events are, however, generally forecastable on the basis of regional heavy rainfall warnings, providing a basis for targeted observations. Radiative snowmelt events and rain‐on‐snow remain difficult to forecast, since the projection of temperatures from the nearest regular weather station yields variable results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A laboratory study was undertaken to investigate how changes in flow regime and hydrograph shape (number of cycled hydrographs and duration of each hydrograph) together impact bedload transport and resulting bed morphology. Three hydrologic conditions (experiments) representing different levels of urbanization, or analogously different flow regimes, were derived from measured hydrometric field data. Each experiment consisted of a series of hydrographs with equal peak discharge and varying frequency, duration and flashiness. Bedload transport was measured throughout each hydrograph and measurements of bed topography and surface texture were recorded after each hydrograph. The results revealed hysteresis loops in both the total and fractional transport, with more pronounced loops for longer duration hydrographs, corresponding to lower rate of unsteadiness until reaching the peak discharge (pre-urbanization conditions). Shorter duration hydrographs (urban conditions) displayed more time above critical shear stress thresholds leading to higher bedload transport rates and ultimately to more variable hysteresis patterns. Surface textures from photographic methods revealed surface armoring in all experiments, with larger armor ratios for longer duration hydrographs, speculated to be due to vertical sorting and more time for bed rearrangements to occur. The direction of bed surface adjustment was linked to bedload hysteresis, more precisely with clockwise hysteresis (longer hydrographs) typically resulting in bed coarsening. More frequent and shorter duration hydrographs result in greater relative channel adjustments in slope, topographic variability and surface texture. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
Vito Ferro 《水文研究》1998,12(12):1895-1910
An equation for evaluating the sediment transport capacity of overland flow is a necessary part of a physically based soil erosion model describing sediment detachment and transport as distributed processes. At first, for the hydraulic conditions of small-scale and large-scale roughness, the sediment transport capacity relationship used in the WEPP model is calibrated by Yalin and Govers' equation. The analysis shows that the transport coefficient Kt depends on the Shields parameter, Y, according to a semi-logarithmic (Yalin) or a linear (Govers) equation. The reliability of the semi-logarithmic equation is verified by Smart's, and Aziz and Scott's experimental data. Then the Low's formula, whose applicability is also proved by Smart's, and Aziz and Scott's data, is transformed as a stream power equation in which a stream power coefficient, KSP, depending on Shields parameter, slope, sediment and water-specific weight, appears. A relationship between transport capacity and effective stream power is also proposed. Finally, the influence of rainfall on sediment transport capacity and the prediction of critical shear stress corresponding to overland flow are examined. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Morphologic transport estimates available for a 65‐km stretch of Fraser River over the period 1952–1999 provide a unique opportunity to evaluate the performance of bedload transport formulae for a large river over decadal time scales. Formulae tested in this paper include the original and rational versions of the Bagnold formula, the Meyer‐Peter and Muller formula and a stream power correlation. The generalized approach adopted herein does not account for spatial variability in flow, bed structure and channel morphology. However, river managers and engineers, as well as those studying rivers within the context of long‐term landscape change, may find this approach satisfactory as it has minimal data requirements and provides a level of process specification that may be commensurable with longer time scales. Hydraulic geometry equations for width and depth are defined using morphologic maps based on aerial photography and bathymetric survey data. Comparison of transport predictions with bedload transport measurements completed at Mission indicates that the original Bagnold formula most closely approximates the main trends in the field data. Sensitivity analyses are conducted to evaluate the impact of inaccuracies in input variables width, depth, slope and grain size on transport predictions. The formulae differ in their sensitivity to input variables and between reaches. Average annual bedload transport predictions for the four formulae show that they vary between each other as well as from the morphologic transport estimates. The original Bagnold and Meyer‐Peter and Muller formulae provide the best transport predictions, although the former underestimates while the latter overestimates transport rates. Based on our findings, an error margin of up to an order of magnitude can be expected when adopting generalized approaches for the prediction of bedload transport. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Sediment in urban stormwater systems creates a significant maintenance burden, while a lack of coarse-grained bed sediment in streams limits their ecological value and geomorphic resilience. Gravel substrates, for example, provide benthic habitat yet are often scoured from the channel bed only to end up in a detention basin or treatment wetland. This dual problem of both ‘too much’ and ‘too little’ coarse-grained sediment reflects a watershed sediment budget that is profoundly altered. We developed a conceptual urban coarse-grained (>0.5 mm) sediment budget across three domains: hillslopes (urban land surfaces), the built stormwater network and stream channels. We then quantified key sources, sinks and storages for a suburban case study, using a combination of hillslope and in-channel monitoring, and interrogation of local government records. Around 36% of the sediment supplied to the stormwater network reached the catchment outlet, a level of sediment delivery much higher than observed in similar-sized natural catchments. The remainder was deposited in the sediment cascade and either stored, or extracted and removed from the catchment (e.g. material deposited in sediment ponds and gross pollutant traps). Conventional urban drainage networks are characterized by high hillslope sediment supply and low storage, resulting in efficient sediment delivery. Channel erosion, deposition in (and extraction from) pipes and channels, and floodplain deposition are small compared to sediment transport through the cascade. An understanding of the sediment budget of urban headwater catchments can provide stormwater and waterway managers with the information they need to address specific sediment problems such as sedimentation in stormwater assets and geomorphic recovery of urban streams. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Intrinsic and extrinsic forces on the catchment and stream channel network drive morphological change. Separating individual forcings is difficult given the complexity of such nonlinear systems. Here a modelling approach is used to investigate the sensitivity of channel position and movement under a series of realistic rainfall scenarios for a catchment in southeastern Australia. The results demonstrate the sensitivity of the catchment to different rainfall patterns and how relatively small changes in rainfall can lead to much larger sediment outputs revealing sensitivity to subtle changes in climate. Channel movement occurs as an avulsion. This is the first time such a process has been observed and modelled in an ephemeral stream environment and demonstrates fluvial geomorphic change at human time scales. Human intervention by rock lining channels was demonstrated to prevent the movement of the main channel. Overall the CAESAR landscape evolution and erosion model used in this study is able to replicate both erosion rates and the variation in past channel movement. The modelling suggests that any landscape change is based on both internal and external forcing and that landscape history also plays a significant role. Here, we demonstrate the potential to quantify many of the nonlinearities and thresholds in soil‐mantled catchments using a landscape evolution model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e. step pools and riffle pools) and semialluvial morphologies (i.e. boulder cascades and forced step pools) on bedload entrainment and transport. Results indicate that dynamics of bedload entrainment are influenced by differences in flow resistance attributable to morphology. Scaled fractional analysis shows that in reaches with high form resistance most bedload transport occurs in partial mobility fashion relative to the available bed material, while calibers finer than 16 mm attain full mobility during bankfull flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches exhibiting reduced form resistance. Our findings confirm that the Shields value for mobilization of the median surface grain size depends on channel gradient and relative submergence; however, we also find that these relations vary considerably for cobble and gravel bed channels due to proportionality between dimensionless shear stress and grain size. Exponents of bedload rating curves across sites correlate most with the D90s of the mobile bed, however, where grain effects are controlled (i.e. along individual streams), differences in form resistance across morphologies exert a primary control on bedload transport dynamics. Application of empirical formulae developed for use in steep alpine channels present variable success in predicting transport rates in forested snowmelt streams. Formulae that explicitly account for reductions in mobile bed area and high morphological resistance associated with woody debris provide the best approximation to observed empirical data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Understanding bedload transport fluctuations in rivers is crucial for complementing the existing knowledge on sediment transport theory. In this contribution, we use a natural-scale laboratory flume to analyse bedload transport fluctuations in non-uniform sand under normal flow conditions. Based on the significance of downward seepage, we incorporate the seepage effect on bedload transport over a non-uniform sand bed channel. The weight of the dry material was measured, and the volumetric transport rate per unit width (bedload transport rate) was estimated. An important observation is that the bedload transport rate initially rapidly increases with time and reaches a maximum value. Based on experimental data, we propose an empirical expression to estimate temporal bedload transport. In addition, an empirical model for bedload transport is proposed by incorporating downward seepage among other variables. The performance of several existing bedload transport formulae was also taken into account by the experimental datasets.  相似文献   

14.
A system has been installed to automatically monitor rainfall, streamflow, bedload discharge and suspended sediment concentration in the arid to hyper‐arid setting of Nahal Rahaf, Southern Judean Desert in Israel. The Rahaf gauging station is located in a relatively steep, wide channel with an unsteady bed driven by flash floods. It is an attempt to deploy modern automatic equipment for continuous sediment transport monitoring in harsh, arid fluvial environments. Unit bedload discharges are the highest recorded hitherto, suggesting they may represent an upper end member in the worldwide climate–bedload discharge relationship. Suspended sediment concentration is much higher than is typical of perennial fluvial humid environments. There is high correlation between suspended sediment concentration and water discharge on an event scale, with diverse intra‐event relations. The sediment yield of individual events is large, but the small number of floods limits the mean annual sediment yield to low values in this arid environment. This also has environmental implications, as large‐scale quarrying requires a long period of self‐restoration in such an arid fluvial setting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Soil erosion is a global environmental problem. To quantify water erosion rates at the field, hillslope or catchment scale, several spatially-distributed soil erosion models have been developed. The accuracy of those models depends largely on the sediment detachment and transport functions used, many of which were developed from empirical research. In this paper, the physical basis of the available sediment detachment and transport functions is reviewed, and their application boundaries determined. Well-known and widely-used sediment detachment and transport functions are discussed on the basis of composite force predictors, i.e. shear stress, stream power, unit stream power and effective stream power, and their suitability is elucidated based on information in the literature. It was found that only a few sediment detachment functions are available, and those have been poorly tested. Most erosion models ignore direct calculation of sediment detachment, but use the sediment transport capacity deficit approach to estimate detachment rate. Many more sediment transport functions are available that also tested better for overland flow conditions. However, our tests did not result in a single function that appeared to perform best under a range of experimental conditions. The unit stream power-based functions developed by Govers seem to be the most promising ones for water erosion modelling. It is therefore recommended to evaluate the performance of existing sediment transport functions with more detailed field and laboratory datasets.
Editor Z.W. Kundzewicz  相似文献   

16.
It has been thought for some time that bedload sediment transport rates may differ markedly in ephemeral and perennial rivers and, supporting this thought, there has been observation of very high rates of bedload transport by flash floods in the ephemeral river Nahal Yatir. However, until now, there has been no quantitative model resolving the observation, nor a theory capable of explaining why bedload transport rates by unsteady flash floods can be reasonably well described by bedload transport capacity formulae initially derived for steady flows. Here a time scale analysis of bedload transport is presented as pertaining to Nahal Yatir, which demonstrates that bedload transport can adapt sufficiently rapidly to capacity determined exclusively by local flow regime, and accordingly the transport capacity formulations developed for steady flows can be applied even under unsteady flows such as flash floods. Complementing the time scale analysis, a series of computational exercises using a coupled shallow water hydrodynamic model are shown to adequately resolve the observation of the very high rates of bedload transport by flash floods in Nahal Yatir. While bedload transport rates in ephemeral and perennial rivers differ remarkably when evaluated against a pure flow parameter such as specific stream power, they are essentially reconciled if assessed with a physically sensible parameter incorporating not only the flow regime but also the sediment particle size. The present finding underpins the practice of fluvial geomorphologists relating measured bedload transport to local flow and sediment characteristics only, irrespective of whether the flow is unsteady or steady. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Research into torrent erosion has focused on bedload transport dynamics, debris flow propagation during flood events, and fan sedimentation. Studies have frequently been biased towards specific events and have not considered sediment delivery in the catchment as a whole. The aim of this study is to examine spatial variations and process controls on sediment transfer in an upland torrent system (hillslopes, channel and fan). The study site is Iron Crag, a small torrent system (catchment area 2·4 ha) situated in the northern Lake District, UK. Particle size analysis of hillslope sediments trapped during transport suggests sediment calibre is controlled primarily by sediment source. Freeze–thaw and rainfall processes impart a weak but recognizable size sorting signature on the trapped sediments. However, these variations are less significant in determining sediment supply to the basal fan, than those operating in the channel system. Channel sediment movement is strongly influenced by storm events, the type of flow process (debris flow or fluvial flow), the sediment characteristics, and the local channel topography. The importance of the channel–fan coupling is clearly demonstrated in that more than 90 per cent of fan sedimentation is derived from channel sediment sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

This paper aims at initiating a fundamental understanding of the suspended load transport of river sediment in unsteady flow. Laboratory erosion tests as well as artificial flood experiments are used to evaluate the influence of the transient regime on the transport efficiency of the flow. The erosion experiments reveal that the transport capacity is augmented when the unsteadiness of the flow increases. However, the influence of the transient regime is counteracted by the cohesive properties of the river bed. Field experiments with artificial floods released from a reservoir into a small canal confirm these findings and show a relationship between the friction velocity and the suspended load transport. An appropriate parameter β is proposed to evaluate the impact of the transient regime on the transport of suspended sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号